Аналитическая геометрия. Часть II. Аналитическая геометрия пространства. Шурыгин В.В. - 19 стр.

UptoLike

Составители: 

{e
1
, e
2
, e
3
} ε
3
12
= ε
1
23
= ε
2
31
= 1
ε
3
21
= ε
1
32
= ε
2
13
= 1 ε
k
ij
= 0
[a, b] = (a
2
b
3
a
3
b
2
)e
1
+ (a
3
b
1
a
1
b
3
)e
2
+ (a
1
b
2
a
2
b
1
)e
3
.
[a, b] =
e
1
e
2
e
3
a
1
a
2
a
3
b
1
b
2
b
3
.
S
4ABC
=
1
2
|[
AB,
AC]| =
1
2
|[r
B
r
A
, r
C
r
A
]|.
a b c
E
3
(a, b, c) = ([a, b], c).
(a, b, c) = 0 a b c
(a, b, c) > 0 {a, b, c}
(a, b, c) < 0 {a, b, c}
a b c |(a, b, c)|
V a b c
S a b
h
|(a, b, c)| = |([a, b], c)| = |[a, b]||pr
[a,b]
(c)| = Sh.
*0:-04 +2 ,09++ *0:-0 {e1, e2, e3} 1)C+902)17+O ε312 = ε123 = ε231 = 1 O
                                                  ?
ε321 = ε132 = ε213 = −1 O 0 +-2017) εkij = 0 +†2+4
                                                                                        
            [a, b] = (a2 b3 − a3 b2 )e1 + (a3 b1 − a1 b3 )e2 + (a1 b2 − a2 b1 )e3 . €›
Ñ+41 €› C+*+ :0,-9027 9 9C) -49+1()-.++ +,)C)12)13
                                        e1 e2 e3
                                                                                        
                               [a, b] = a1 a2 a3 .                                  €P
                                        b1 b2 b3
   âhIlHŸn iŸ© kJƒLpŸfML© rŸhãniL qIfHKhŸ¾MLjn k rIhpqInMpqkf'
   01+(+ -1(0A ,1+-.++ 2)+17.0O 4))4~
                        1 −→ −→      1
                 S4ABC = |[AB, AC]| = |[rB − rA , rC − rA ]|.
                        2            2
™'™ lfžnMMhf rIhLokfifMLf'
#rIfifŸfMLf' äz·v{{yz ‘x|“}³{z ux¼ }´u|x|} a º b  c |x{w
ux|}v{{|•| }´¹³|}v ‘x|tuxv{tu}v E3 {v“y}vut” t¹³ÁÄ» ҍt¹|~
                                (a, b, c) = ([a, b], c).
   "fhlfqILƒfpjLf pkh¡pqkn plfžnMMhKh rIhLokfifML© '
   € (a, b, c) = 0 ⇐⇒ 9).2+ a O b  c .+4,100 ­
      (a, b, c) > 0 ⇐⇒ {a, b, c} ; ,09D *0:-
                                                   ­
      (a, b, c) < 0 ⇐⇒ {a, b, c} ; 1)9D *0:-
                                                 
   < -1 9).2+ a O b  c ) .+4,100O 2+ |(a, b, c)| ; +*å)4 ,001B
1)1),,)C0O ,+-2+)++ 0 †2E 9).2+0E 
   ?)9+) -9+D-29+ 3913)2-3 ),+-)C-29)4 -1)C-29)4 : ,9)C)+D
s) F+41 €> C13 9(-1)3 -4)@0++ ,+:9)C)3  +.0s)4
-9+D-29+ <
   ?-27 V ; +*å)4 ,0011)1),,)C0O ,+-2+)++ 0 9).2+0E a O b  c O
S ; ,1+ 0C7 ,0011)1+0440O ,+-2+)++ 0 9).2+0E a  b O 0--402B
90)4++ .0. +-+90) ,0011)1),,)C0O 0 h ; 9-+20 ,0011)1),,)C0O
+, )03 0 .0:0+) +-+90)  4))4 -4 -+. ¨~
                |(a, b, c)| = |([a, b], c)| = |[a, b]| |pr[a,b] (c)| = Sh.
                                            ×Ï