Аналитическая геометрия. Часть II. Аналитическая геометрия пространства. Шурыгин В.В. - 46 стр.

UptoLike

Составители: 

t
1
t
2
{M
0
; a
1
, a
2
}
π M
0
= (2; 1; 1) a
1
= {3; 3; 1} a
2
= {−4; 2; 2}
(x
1
A
, x
2
A
, x
3
A
) A t
1
A
= 2
t
2
A
= 1 {M
0
; a
1
, a
2
}
(t
1
B
, t
2
B
) B(3; 4; 2) π
` {x
1
, x
2
, x
3
}
2t
1
+ t
2
1 = 0 π
{M
0
; a
1
, a
2
}
` π
2x
1
x
2
+ x
3
5 = 0 π
{M
0
; a
1
, a
2
}
t
1
A
= 2
t
2
A
= 1
A x
1
A
= 4 x
2
A
= 3 x
3
A
= 1
t
1
B
t
2
B
B
x
1
B
= 3 x
2
B
= 4 x
3
B
= 2
t
1
t
2
t
1
B
= 3
t
2
B
= 2
2t
1
+ t
2
1 = 0
t
1
= u t
2
= 1 2u `
x
1
= 2 + 11u x
2
= 3 7u x
3
= 3 + 5u
2x
1
x
2
+
x
3
5 = 0 2(2 + 3t
1
4t
2
) (1 3t
1
+ 2t
2
) + (1 +
t
1
2t
2
) 5 = 0 5t
1
6t
2
+ 1 = 0
` t
1
= 1 + 6u t
2
= 1 + 5u
1 α β
A
i
x
i
+ A
4
= 0 B
i
x
i
+ B
4
= 0
?004)2 t1  t2 3913A2-3 .++C0204 2+(). ,1+-.+-2 9 ),)) {M ; a , a }
0 ,1+-.+-2 π O C) M0 = (2; 1; −1) O a1 = {3; −3; 1} O a2 = {−4; 2; −2}  0DB
                                                                            0 1 2


2~
    € .++C02 (x1 , x2 , x3 ) 2+(. A O )-1 :9)-2 )) .++C02 t1 = 2 O
  2
tA = 1   9 ),))     A A A
                  {M0 ; a1 , a2 }
                                  ­                                      A

     
    < .++C02 (t1B , t2B ) 2+(. B(3; −4; −2) ∈ π ­
    ˆ 09)3 ,34+D ` 9 --2)4) .++C02 {x1, x2, x3} O )-1 :9)-2+
)) 09)) 2t1 + t2 − 1 = 0 9+ 92))D --2)4) .++C02 0 π O +,)B
C)13)4+D ),)+4 {M0; a1, a2} ­
    Ё 09)3 ,34+D ` O ,+ .+2++D ,1+-.+-27 π ,))-).0)2-3 ,1+-.+-27A
2x1 − x2 + x3 − 5 = 0 O 9+ 92))D --2)4) .++C02 0 ,1+-.+-2 π O
+,)C)13)4+D ),)+4 {M0; a1, a2} 
    %fžfMLf' € ?+C-209133 :0()3 t1 = 2 O t2 = 1 9 09)3 ›—O
0E+C4 .++C02 2+(. A ~ x1A = 4 O xA2A = −3 O Ax3A = −1 
    < 13 0E+sC)3 .++C02 t1B O t2B 2+(. B ,+C-20913)4 )) .++CB
02 x1B = 3 O x2B = −4 O x3B = −2 9 09)3 ›— O )@03 9+:.0A A
--2)4 2)E 09)D - C943 ):9)-24 t1  t2 O 0E+C4 t1B = 3 O
t2B = 2
        
    ˆ )@03 09)) 2t1 + t2 − 1 = 0 O 0DC)4 ,004)2()-.) 09)3
                                                                   ?
t1 = u O t2 = 1 − 2u ,34+D ` 9+ 92))D --2)4) .++C02 +C-209133
†2 09)3 9 ›—O 0E+C4 x1 = −2 + 11u O x2 = 3 − 7u O x3 = −3 + 5u 
    Ё ?+C-209133 ,004)2()-.) 09)3 ›— 9 09)) 2x1 − x2 +
                   (
x3 − 5 = 0 O ,+1 0)4 09)) 2(2 + 3t1 − 4t2 ) − (1 − 3t1 + 2t2 ) + (−1 +
t1 − 2t2 ) − 5 = 0 ⇐⇒ 5t1 − 6t2 + 1 = 0 O )@03 .+2++)O 0E+C4 92))
,004)2()-.) 09)3 ,34+D ` ~ t1 = 1 + 6u O t2 = 1 + 5u 
    %fjhlfMiHfln© ŸLqfInqHIn¢ ª€« O 1  8O ®›­ ª<« O 1  88
    ‚ninƒL L HrIn¯MfML©¢ ª<« O €ˆ€=O €ˆ<=O €ˆ<€O €ˆ<Š O €ˆ<—O €ˆO €ˆ—¨O €ˆ¨>O €ˆ¨¨O €Š=€O €Š=