Теория массового обслуживания. Сивохин А.В - 210 стр.

UptoLike

210
diff(p[n+s+1](t), t)=diff(1-
(sum(p[i](t), i=0..n+s)), t)
};
ODESystem :=
?
?
?
d
dt
p
0
t( ) = -5.08 p
0
t( ) + 4.12 p
1
t()
,
d
dt
p
10
t( ) = -5.08 p
9
t( ) - 56.33 p
10
t( ) + 57.38 p
11
t()
,
d
dt
p
14
t( ) = -5.08 p
13
t( ) - 80.85 p
14
t( ) + 81.90 p
15
t(),
d
dt
p
3
t( ) = 5.08 p
2
t( ) - 17.44 p
3
t( ) + 16.48 p
4
t(),
d
dt
p
1
t( ) = 5.08 p
0
t( ) - 9.20 p
1
t( ) + 8.24 p
2
t(),
d
dt
p
2
t( ) = 5.08 p
1
t( ) - 13.32 p
2
t( ) + 12.36 p
3
t(),
d
dt
p
4
t( ) = 5.08 p
3
t( ) - 21.56 p
4
t( ) + 20.60 p
5
t(),
d
dt
p
6
t( ) = -5.08 p
5
t( ) - 31.81 p
6
t( ) + 32.86 p
7
t(),
d
dt
p
7
t( ) = -5.08 p
6
t( ) - 37.94 p
7
t( ) + 38.99 p
8
t(),
d
dt
p
8
t( ) = -5.08 p
7
t( ) - 44.07 p
8
t( ) + 45.12 p
9
t(),
d
dt
p
9
t( ) = -5.08 p
8
t( ) - 50.20 p
9
t( ) + 51.25 p
10
t(),
d
dt
p
11
t( ) = -5.08 p
10
t( ) - 62.46 p
11
t( ) + 63.51 p
12
t(),
d
dt
p
12
t( ) = -5.08 p
11
t( ) - 68.59 p
12
t( ) + 69.64 p
13
t(),
d
dt
p
13
t( ) = -5.08 p
12
t( ) - 74.72 p
13
t( ) + 75.77 p
14
t(),
d
dt
p
15
t( ) = -5.08 p
14
t( ) - 86.98 p
15
t( ) + 88.03 p
16
t(),
d
dt
p
16
t( ) = -
d
dt
p
0
t()
?
?
?
?
?
?
-
d
dt
p
1
t()
?
?
?
?
?
?
-
d
dt
p
2
t()
?
?
?
?
?
?
-
d
dt
p
3
t()
?
?
?
?
?
?
-
d
dt
p
4
t()
?
?
?
?
?
?
-
d
dt
p
5
t()
?
?
?
?
?
?
-
d
dt
p
6
t()
?
?
?
?
?
?
-
d
dt
p
7
t()
?
?
?
?
?
?
-
d
dt
p
8
t()
?
?
?
?
?
?
-
d
dt
p
9
t()
?
?
?
?
?
?
-
d
dt
p
10
t()
?
?
?
?
?
?
-
d
dt
p
11
t()
?
?
?
?
?
?
-
d
dt
p
12
t()
?
?
?
?
?
?
-
d
dt
p
13
t()
?
?
?
?
?
?
-
d
dt
p
14
t()
?
?
?
?
?
?
-
d
dt
p
15
t()
?
?
?
?
?
?
?
?
?
5. Решение дифференциальных уравнений для
вероятностей состояний pi(t) в общем виде
# PSi:=dsolve(ODESystem);
> PSi[1]:
> diff((PSi[1]), t):
> PSi[2]:
> diff((PSi[2]), t):
> PSi[3]:
> diff((PSi[3]), t):
> PSi[4]:
> diff((PSi[4]), t):
> PSi[5]:
           diff(p[n+s+1](t), t)=diff(1-
(sum(p[i](t), i=0..n+s)), t)
         };
             ? d                                    d
ODESystem := ?    p0(t) = -5.08 p0(t) + 4.12 p1(t),    p10(t) = -5.08 p9(t) - 56.33 p10(t) + 57.38 p11(t),
             ? dt                                   dt

       d                                                       d
          p14(t) = -5.08 p13(t) - 80.85 p14(t) + 81.90 p15(t),   p (t) = 5.08 p2(t) - 17.44 p3(t) + 16.48 p4(t),
       dt                                                      dt 3
       d                                                d
          p1(t) = 5.08 p0(t) - 9.20 p1(t) + 8.24 p2(t),   p (t) = 5.08 p1(t) - 13.32 p2(t) + 12.36 p3(t),
       dt                                               dt 2
       d                                                  d
          p4(t) = 5.08 p3(t) - 21.56 p4(t) + 20.60 p5(t),   p (t) = -5.08 p5(t) - 31.81 p6(t) + 32.86 p7(t),
       dt                                                 dt 6
       d                                                   d
          p7(t) = -5.08 p6(t) - 37.94 p7(t) + 38.99 p8(t),   p (t) = -5.08 p7(t) - 44.07 p8(t) + 45.12 p9(t),
       dt                                                  dt 8
       d                                                    d
          p9(t) = -5.08 p8(t) - 50.20 p9(t) + 51.25 p10(t),   p (t) = -5.08 p10(t) - 62.46 p11(t) + 63.51 p12(t),
       dt                                                   dt 11
       d                                                       d
          p12(t) = -5.08 p11(t) - 68.59 p12(t) + 69.64 p13(t),   p (t) = -5.08 p12(t) - 74.72 p13(t) + 75.77 p14(t),
       dt                                                      dt 13

       d                                                       d              d          ? d p (t)?
          p15(t) = -5.08 p14(t) - 86.98 p15(t) + 88.03 p16(t),    p16(t) = -?
                                                                            ?    p0(t)?
                                                                                      ? -?    1 ?
       dt                                                      dt           ? dt      ? ? dt      ?

          d          ? d p (t)? - ? d p (t)? - ? d p (t)? - ? d p (t)? - ? d p (t)? - ? d p (t)?
       -?
        ?    p2(t)?
                  ? -?    3 ? ?        4 ? ?        5 ? ?        6 ? ?        7 ? ?        8 ?
        ? dt      ? ? dt      ? ? dt       ? ? dt       ? ? dt       ? ? dt       ? ? dt       ?
          d          ? d p (t)? - ? d p (t)? - ? d p (t)? - ? d p (t)? - ? d p (t)?
       -?
        ?    p9(t)?
                  ? -?    10 ? ?       11 ? ?       12 ? ?       13 ? ?       14 ?
        ? dt      ? ? dt      ? ? dt       ? ? dt       ? ? dt       ? ? dt       ?

        ? d        ??
       -?    p15(t)? ?
        ? dt       ??


5. Решение дифференциальных уравнений для
вероятностей состояний pi(t) в общем виде

# PSi:=dsolve(ODESystem);
> PSi[1]:
> diff((PSi[1]), t):
> PSi[2]:
> diff((PSi[2]), t):
> PSi[3]:
> diff((PSi[3]), t):
> PSi[4]:
> diff((PSi[4]), t):
> PSi[5]:
                                                         210