Практикум по общей химии на базе компьютерной лаборатории "L-микро". Сушкова Т.П - 11 стр.

UptoLike

Рубрика: 

ɦɭ ɡɧɚɱɟɧɢɸ ɨɩɬɢɱɟɫɤɨɣ ɩɥɨɬɧɨɫɬɢ), ɤɨɬɨɪɭɸ ɪɚɫɫɱɢɬɵɜɚɸɬ ɩɨ ɤɚɥɢɛɪɨ-
ɜɨɱɧɨɦɭ ɝɪɚɮɢɤɭ, ɜɵɞɚɧɧɨɦɭ ɩɪɟɩɨɞɚɜɚɬɟɥɟɦ;
ɫɬɪɨɹɬ ɝɪɚɮɢɤ ɡɚɜɢɫɢɦɨɫɬɢ ɤɨɧɰɟɧɬɪɚɰɢɢ ɣɨɞɚ ɨɬ ɜɪɟɦɟɧɢ;
ɞɥɹ ɪɚɫɱɟɬɚ ɧɚɱɚɥɶɧɨɣ ɫɤɨɪɨɫɬɢ ɚɧɚɥɢɬɢɱɟɫɤɢ ɩɪɢɛɥɢɠɚɸɬ ɩɪɹɦɨɣ
ɩɟɪɜɵɟ ɞɜɚɞɰɚɬɶ ɬɨɱɟɤ. Ɍɚɧɝɟɧɫ ɭɝɥɚ ɧɚɤɥɨɧɚ ɩɨɥɭɱɟɧɧɨɣ ɩɪɹɦɨɣ ɢ ɛɭɞɟɬ
ɫɤɨɪɨɫɬɶɸ ɪɟɚɤɰɢɢ ɩɨ ɣɨɞɭ (ɫɥɟɞɢɬɟ ɡɚ ɪɚɡɦɟɪɧɨɫɬɹɦɢ);
ɢɡ ɫɬɨɥɛɰɚ ɬɟɦɩɟɪɚɬɭɪ ɪɚɫɫɱɢɬɵɜɚɸɬ ɫɪɟɞɧɟɟ ɡɧɚɱɟɧɢɟ ɬɟɦɩɟɪɚɬɭɪɵ
ɜ ɩɪɨɰɟɫɫɟ ɤɚɠɞɨɝɨ ɨɩɵɬɚ.
ɋɞɟɥɚɣɬɟ ɜɵɜɨɞ ɨ ɡɚɜɢɫɢɦɨɫɬɢ ɫɤɨɪɨɫɬɢ ɪɟɚɤɰɢɢ ɨɬ ɬɟɦɩɟɪɚɬɭɪɵ.
Ɋɚɫɫɱɢɬɚɣɬɟ ɤɨɷɮɮɢɰɢɟɧɬ ȼɚɧɬ-Ƚɨɮɮɚ ɢɡɭɱɚɟɦɨɣ ɪɟɚɤɰɢɢ ɩɨ ɮɨɪɦɭɥɟ (1).
Ʌɚɛɨɪɚɬɨɪɧɚɹ ɪɚɛɨɬɚ ʋ 4
Ɉɩɪɟɞɟɥɟɧɢɟ ɷɮɮɟɤɬɢɜɧɨɣ ɷɧɟɪɝɢɢ ɚɤɬɢɜɚɰɢɢ
ɪɟɚɤɰɢɢ ɨɤɢɫɥɟɧɢɹ ɢɨɞɢɞ-ɢɨɧɚ
ȼɧɢɦɚɧɢɟ! Ɋɚɛɨɬɭ ɢɦɟɟɬ ɫɦɵɫɥ ɜɵɩɨɥɧɹɬɶ ɩɨɫɥɟ ɪɚɛɨɬɵ ʋ 2, ɢɛɨ
ɨɧɚ ɜɵɩɨɥɧɹɟɬɫɹ ɚɧɚɥɨɝɢɱɧɨ, ɬɨɥɶɤɨ ɩɪɢ ɪɚɡɧɵɯ ɬɟɦɩɟɪɚɬɭɪɚɯ.
ȼ ɞɚɧɧɨɣ ɪɚɛɨɬɟ ɞɨɥɠɟɧ ɢɫɩɨɥɶɡɨɜɚɬɶɫɹ ɤɚɥɢɛɪɨɜɨɱɧɵɣ ɝɪɚɮɢɤ ɡɚɜɢ-
ɫɢɦɨɫɬɢ ɨɩɬɢɱɟɫɤɨɣ ɩɥɨɬɧɨɫɬɢ ɪɚɫɬɜɨɪɚ ɨɬ ɤɨɧɰɟɧɬɪɚɰɢɢ ɣɨɞɚ,
ɩɨɫɬɪɨɟɧɧɵɣ ɩɨ ɪɟɡɭɥɶɬɚɬɚɦ ɥɚɛɨɪɚɬɨɪɧɨɣ ɪɚɛɨɬɵ ʋ1. ȿɫɥɢ ɪɚɛɨ-
ɬɚ ʋ1 ɧɟ ɜɵɩɨɥɧɹɥɚɫɶ, ɩɪɟɩɨɞɚɜɚɬɟɥɶ ɜɵɞɚɟɬ ɫɬɭɞɟɧɬɚɦ ɝɨɬɨɜɵɣ
ɤɚɥɢɛɪɨɜɨɱɧɵɣ ɝɪɚɮɢɤ.
Ɍɟɨɪɢɹ. ɉɪɢɛɥɢɠɟɧɧɨ ɡɚɜɢɫɢɦɨɫɬɶ ɫɤɨɪɨɫɬɢ ɪɟɚɤɰɢɢ ɨɬ ɬɟɦɩɟɪɚɬɭɪɵ
ɨɩɢɫɵɜɚɟɬɫɹ ɩɪɚɜɢɥɨɦ ȼɚɧɬ-Ƚɨɮɮɚ, ɜ ɫɨɨɬɜɟɬɫɬɜɢɢ ɫ ɤɨɬɨɪɵɦ ɩɪɢ ɩɨɜɵ-
ɲɟɧɢɢ ɬɟɦɩɟɪɚɬɭɪɵ ɧɚ ɤɚɠɞɵɟ ɞɟɫɹɬɶ ɝɪɚɞɭɫɨɜ ɫɤɨɪɨɫɬɶ ɪɟɚɤɰɢɢ ɜɨɡɪɚɫ-
ɬɚɟɬ ɜ 2–4 ɪɚɡɚ. Ȼɨɥɟɟ ɫɬɪɨɝɨ ɡɚɜɢɫɢɦɨɫɬɶ ɫɤɨɪɨɫɬɢ ɪɟɚɤɰɢɢ ɨɬ ɬɟɦɩɟɪɚɬɭ-
ɪɵ ɜɵɪɚɠɚɟɬɫɹ ɭɪɚɜɧɟɧɢɟɦ Ⱥɪɪɟɧɢɭɫɚ:
k = k ·exp(-E
0 ɚɤɬ
/ RT), (1)
ɝɞɟ kɤɨɧɫɬɚɧɬɚ ɫɤɨɪɨɫɬɢ ɪɟɚɤɰɢɢ ɜ ɤɢɧɟɬɢɱɟɫɤɨɦ ɭɪɚɜɧɟɧɢɢ, k–ɩɪɟɞɷɤɫ-
0
ɩɨɧɟɧɰɢɚɥɶɧɵɣ ɦɧɨɠɢɬɟɥɶ (ɤɨɧɫɬɚɧɬɚ ɫɤɨɪɨɫɬɢ, ɤɨɬɨɪɚɹ ɛɵɥɚ ɛɵ, ɟɫɥɢ ɛɵ
ɜɫɟ ɫɨɭɞɚɪɟɧɢɹ ɱɚɫɬɢɰ ɩɪɢɜɨɞɢɥɢ ɤ ɯɢɦɢɱɟɫɤɨɦɭ ɜɡɚɢɦɨɞɟɣɫɬɜɢɸ), E
ɚɤɬ
ɷɧɟɪɝɢɹ ɚɤɬɢɜɚɰɢɢ ɪɟɚɤɰɢɢ, R = 8.314 Ⱦɠ/(ɦɨɥɶ·Ʉ) – ɭɧɢɜɟɪɫɚɥɶɧɚɹ ɝɚɡɨɜɚɹ
ɩɨɫɬɨɹɧɧɚɹ, Ɍɚɛɫɨɥɸɬɧɚɹ ɬɟɦɩɟɪɚɬɭɪɚ.
Ɉɩɪɟɞɟɥɹɹ ɧɚɱɚɥɶɧɭɸ ɫɤɨɪɨɫɬɶ ɪɟɚɤɰɢɢ ɩɪɢ ɪɚɡɧɵɯ ɬɟɦɩɟɪɚɬɭɪɚɯ,
ɧɨ ɨɞɢɧɚɤɨɜɵɯ ɧɚɱɚɥɶɧɵɯ ɤɨɧɰɟɧɬɪɚɰɢɹɯ ɪɟɚɝɟɧɬɨɜ, ɦɨɠɧɨ ɜɵɱɢɫɥɢɬɶ
ɷɧɟɪɝɢɸ ɚɤɬɢɜɚɰɢɢ. Ⱦɥɹ ɷɬɨɝɨ ɫɬɪɨɹɬ ɡɚɜɢɫɢɦɨɫɬɶ ɧɚɱɚɥɶɧɨɣ ɫɤɨɪɨɫɬɢ ɨɬ
ɬɟɦɩɟɪɚɬɭɪɵ ɜ ɥɢɧɟɚɪɢɡɨɜɚɧɧɵɯ ɤɨɨɪɞɢɧɚɬɚɯ (ɧɚɬɭɪɚɥɶɧɵɣ ɥɨɝɚɪɢɮɦ
ɫɤɨɪɨɫɬɢ ɨɬ ɨɛɪɚɬɧɨɣ ɬɟɦɩɟɪɚɬɭɪɵ):
21
ln v = (lnk
0
6
lnC) E
ii ɚɤɬ
/RT (2)
ɝɞɟ ɋ , – ɤɨɧɰɟɧɬɪɚɰɢɹ i-ɝɨ ɤɨɦɩɨɧɟɧɬɚ, n ɩɨɪɹɞɨɤ ɪɟɚɤɰɢɢ ɩɨ ɷɬɨɦɭ ɤɨɦ-
ii
ɩɨɧɟɧɬɭ. Ɍɚɧɝɟɧɫ ɭɝɥɚ ɧɚɤɥɨɧɚ ɩɨɥɭɱɟɧɧɨɣ ɩɪɹɦɨɣ ɪɚɜɟɧ – E
ɚɤɬ
/R..
ɉɨɫɤɨɥɶɤɭ ɛɨɥɶɲɢɧɫɬɜɨ ɪɟɚɤɰɢɣɦɧɨɝɨɫɬɚɞɢɣɧɵɟ, ɝɨɜɨɪɢɬɶ ɨɛ ɢɯ
ɷɧɟɪɝɢɢ ɚɤɬɢɜɚɰɢɢ ɧɟɤɨɪɪɟɤɬɧɨ, ɩɨɫɤɨɥɶɤɭ ɤɚɤ ɷɧɟɪɝɢɹ ɚɤɬɢɜɚɰɢɢ, ɬɚɤ ɢ
ɩɪɟɞɷɤɫɩɨɧɟɧɰɢɚɥɶɧɵɣ ɦɧɨɠɢɬɟɥɶɩɚɪɚɦɟɬɪɵ ɨɬɞɟɥɶɧɨɣ ɫɬɚɞɢɢ. ɉɨɷɬɨ-
ɦɭ ɞɥɹ ɦɧɨɝɨɫɬɚɞɢɣɧɵɯ ɪɟɚɤɰɢɣ ɷɤɫɩɟɪɢɦɟɧɬɚɥɶɧɨ ɦɨɠɧɨ ɨɩɪɟɞɟɥɢɬɶ
ɬɨɥɶɤɨ ɷɮɮɟɤɬɢɜɧɭɸ ɷɧɟɪɝɢɸ ɚɤɬɢɜɚɰɢɢ ɢ ɷɮɮɟɤɬɢɜɧɵɣ ɩɪɟɞɷɤɫɩɨɧɟɧ-
ɰɢɚɥɶɧɵɣ ɦɧɨɠɢɬɟɥɶ. Ɉɞɧɚɤɨ ɷɬɢ ɩɚɪɚɦɟɬɪɵ ɜɩɨɥɧɟ ɚɞɟɤɜɚɬɧɵ ɞɥɹ ɩɪɟɞ-
ɫɤɚɡɚɧɢɹ ɫɤɨɪɨɫɬɢ ɪɟɚɤɰɢɢ ɩɪɢ ɪɚɡɥɢɱɧɵɯ ɬɟɦɩɟɪɚɬɭɪɚɯ.
ɐɟɥɶ ɪɚɛɨɬɵ.
Ɉɩɪɟɞɟɥɢɬɶ ɷɮɮɟɤɬɢɜɧɭɸ ɷɧɟɪɝɢɸ ɚɤɬɢɜɚɰɢɢ ɪɟɚɤɰɢɢ ɨɤɢɫɥɟɧɢɹ
ɢɨɞɢɞ-ɢɨɧɚ ɩɟɪɫɭɥɶɮɚɬɨɦ 2 KI + K
2
S
2
O
8
= I
2
+ 2 K
2
SO
4
(ɢɥɢ ɜ ɢɨɧɧɨ-
-
ɦɨɥɟɤɭɥɹɪɧɨɣ ɮɨɪɦɟ: 2 I + S
2
0
8
2-
= I
2
+ 2 SɈ
4
2-
).
Ɉɛɨɪɭɞɨɜɚɧɢɟ.
Ʉɨɦɩɶɸɬɟɪ ɫ ɢɡɦɟɪɢɬɟɥɶɧɵɦ ɛɥɨɤɨɦ; ɞɚɬɱɢɤ ɨɩɬɢɱɟɫɤɨɣ ɩɥɨɬɧɨɫɬɢ
525 ɧɦ; ɬɟɪɦɨɞɚɬɱɢɤ, ɤɸɜɟɬɚ; ɦɚɝɧɢɬɧɚɹ ɦɟɲɚɥɤɚ; ɷɥɟɤɬɪɨɩɥɢɬɤɚ; ɬɟɪɦɨ-
ɫɬɨɣɤɢɣ ɫɬɚɤɚɧɱɢɤ ɧɚ 100 ɢɥɢ 150 ɦɥ; ɦɟɪɧɚɹ ɤɨɥɛɚ ɧɚ 100 ɦɥ; ɲɩɪɢɰɵ ɧɚ
20 ɢ 5 ɦɥ.
Ɋɟɚɤɬɢɜɵ.
Ɋɚɫɬɜɨɪɵ ɄI 0.1ɆɢɄ
2
S
2
Ɉ
8
0.1Ɇ, ɞɢɫɬɢɥɥɢɪɨɜɚɧɧɚɹ ɜɨɞɚ.
ɉɨɞɝɨɬɨɜɤɚ ɢɡɦɟɪɢɬɟɥɶɧɨɣ ɫɢɫɬɟɦɵ.
Ʉ ɩɟɪɜɨɦɭ ɤɚɧɚɥɭ ɢɡɦɟɪɢɬɟɥɶɧɨɝɨ ɛɥɨɤɚ ɩɨɞɤɥɸɱɚɸɬ ɞɚɬɱɢɤ ɬɟɦɩɟɪɚ-
ɬɭɪɵ, ɤɨ ɜɬɨɪɨɦɭɞɚɬɱɢɤ ɨɩɬɢɱɟɫɤɨɣ ɩɥɨɬɧɨɫɬɢ ɧɚ 525 ɧɦ. ɇɚ «ɪɚɛɨɱɟɦ
ɫɬɨɥɟ» ɤɨɦɩɶɸɬɟɪɚ ɨɬɤɪɵɜɚɸɬ ɩɚɩɤɭ «ɉɪɚɤɬɢɤɭɦ ɩɨ ɨɛɳɟɣ ɯɢɦɢɢ», ɡɚɬɟɦ
ɮɚɣɥ «L-Micro:ɏɢɦɢɹ.ɟɯɟ». ȼ ɦɟɧɸ ɩɪɨɝɪɚɦɦɵ «L-Micro: ɏɢɦɢɹ» ɜɵɛɢ-
ɪɚɸɬ ɩɭɧɤɬ «Ɂɚɜɢɫɢɦɨɫɬɶ ɫɤɨɪɨɫɬɢ ɪɟɚɤɰɢɢ ɨɤɢɫɥɟɧɢɹ ɢɨɞɢɞ-ɢɨɧɚ ɨɬ ɬɟɦ-
ɩɟɪɚɬɭɪɵ».
ɏɨɞ ɪɚɛɨɬɵ.
ɇɚ ɫɭɯɭɸ ɤɸɜɟɬɭ ɧɚɞɟɜɚɸɬ ɞɚɬɱɢɤ ɨɩɬɢɱɟɫɤɨɣ ɩɥɨɬɧɨɫɬɢ, ɫɬɚɜɹɬ ɧɚ
ɦɚɝɧɢɬɧɭɸ ɦɟɲɚɥɤɭ, ɩɨɝɪɭɠɚɸɬ ɬɟɪɦɨɞɚɬɱɢɤ ɢ ɹɤɨɪɶ ɦɟɲɚɥɤɢ.
Ɉɬɦɟɪɹɸɬ ɫ ɩɨɦɨɳɶɸ ɲɩɪɢɰɚ 20 ɦɥ ɪɚɫɬɜɨɪɚ ɄI 0.1Ɇ, ɩɟɪɟɥɢɜɚɸɬ
ɟɝɨ ɜ ɦɟɪɧɭɸ ɤɨɥɛɭ ɧɚ 100 ɦɥ ɢ ɞɨɜɨɞɹɬ ɨɛɴɟɦ ɪɚɫɬɜɨɪɚ ɞɨ ɦɟɬɤɢ ɞɢɫɬɢɥ-
ɥɢɪɨɜɚɧɧɨɣ ɜɨɞɨɣ. ɉɟɪɟɦɟɲɢɜɚɸɬ ɪɚɫɬɜɨɪ, ɩɨɤɚɱɢɜɚɹ ɤɨɥɛɭ, ɡɚɬɟɦ ɜɵɥɢ-
ɜɚɸɬ ɟɝɨ ɜ ɤɸɜɟɬɭ (ɧɟ ɫɞɜɢɝɚɬɶ ɞɚɬɱɢɤ ɨɩɬɢɱɟɫɤɨɣ ɩɥɨɬɧɨɫɬɢ!) ɢ ɧɚɫɬɪɚɢ-
ɜɚɸɬ ɞɚɬɱɢɤ (ɫɦ. ɫ. 6).
Ɉɬɛɢɪɚɸɬ ɞɪɭɝɢɦ ɲɩɪɢɰɟɦ 5 ɦɥ ɪɚɫɬɜɨɪɚ Ʉ
2
S
2
Ɉ
8
, ɛɵɫɬɪɨ ɜɵɥɢɜɚɸɬ
ɟɝɨ ɜ ɤɸɜɟɬɭ (ɤɨɧɱɢɤ ɢɝɥɵ ɜ ɪɚɫɬɜɨɪ ɧɟ ɨɩɭɫɤɚɬɶ!) ɢ ɫɪɚɡɭ ɩɨɫɥɟ ɷɬɨɝɨ
22
ɦɭ ɡɧɚɱɟɧɢɸ ɨɩɬɢɱɟɫɤɨɣ ɩɥɨɬɧɨɫɬɢ), ɤɨɬɨɪɭɸ ɪɚɫɫɱɢɬɵɜɚɸɬ ɩɨ ɤɚɥɢɛɪɨ-                              ln v = (lnk0 – 6 ni ·lnCi) – Eɚɤɬ/RT                (2)
ɜɨɱɧɨɦɭ ɝɪɚɮɢɤɭ, ɜɵɞɚɧɧɨɦɭ ɩɪɟɩɨɞɚɜɚɬɟɥɟɦ;                                   ɝɞɟ ɋi, – ɤɨɧɰɟɧɬɪɚɰɢɹ i-ɝɨ ɤɨɦɩɨɧɟɧɬɚ, ni – ɩɨɪɹɞɨɤ ɪɟɚɤɰɢɢ ɩɨ ɷɬɨɦɭ ɤɨɦ-
    – ɫɬɪɨɹɬ ɝɪɚɮɢɤ ɡɚɜɢɫɢɦɨɫɬɢ ɤɨɧɰɟɧɬɪɚɰɢɢ ɣɨɞɚ ɨɬ ɜɪɟɦɟɧɢ;                ɩɨɧɟɧɬɭ. Ɍɚɧɝɟɧɫ ɭɝɥɚ ɧɚɤɥɨɧɚ ɩɨɥɭɱɟɧɧɨɣ ɩɪɹɦɨɣ ɪɚɜɟɧ – Eɚɤɬ /R..
    – ɞɥɹ ɪɚɫɱɟɬɚ ɧɚɱɚɥɶɧɨɣ ɫɤɨɪɨɫɬɢ ɚɧɚɥɢɬɢɱɟɫɤɢ ɩɪɢɛɥɢɠɚɸɬ ɩɪɹɦɨɣ                ɉɨɫɤɨɥɶɤɭ ɛɨɥɶɲɢɧɫɬɜɨ ɪɟɚɤɰɢɣ – ɦɧɨɝɨɫɬɚɞɢɣɧɵɟ, ɝɨɜɨɪɢɬɶ ɨɛ ɢɯ
ɩɟɪɜɵɟ ɞɜɚɞɰɚɬɶ ɬɨɱɟɤ. Ɍɚɧɝɟɧɫ ɭɝɥɚ ɧɚɤɥɨɧɚ ɩɨɥɭɱɟɧɧɨɣ ɩɪɹɦɨɣ ɢ ɛɭɞɟɬ        ɷɧɟɪɝɢɢ ɚɤɬɢɜɚɰɢɢ ɧɟɤɨɪɪɟɤɬɧɨ, ɩɨɫɤɨɥɶɤɭ ɤɚɤ ɷɧɟɪɝɢɹ ɚɤɬɢɜɚɰɢɢ, ɬɚɤ ɢ
ɫɤɨɪɨɫɬɶɸ ɪɟɚɤɰɢɢ ɩɨ ɣɨɞɭ (ɫɥɟɞɢɬɟ ɡɚ ɪɚɡɦɟɪɧɨɫɬɹɦɢ);                        ɩɪɟɞɷɤɫɩɨɧɟɧɰɢɚɥɶɧɵɣ ɦɧɨɠɢɬɟɥɶ – ɩɚɪɚɦɟɬɪɵ ɨɬɞɟɥɶɧɨɣ ɫɬɚɞɢɢ. ɉɨɷɬɨ-
    – ɢɡ ɫɬɨɥɛɰɚ ɬɟɦɩɟɪɚɬɭɪ ɪɚɫɫɱɢɬɵɜɚɸɬ ɫɪɟɞɧɟɟ ɡɧɚɱɟɧɢɟ ɬɟɦɩɟɪɚɬɭɪɵ        ɦɭ ɞɥɹ ɦɧɨɝɨɫɬɚɞɢɣɧɵɯ ɪɟɚɤɰɢɣ ɷɤɫɩɟɪɢɦɟɧɬɚɥɶɧɨ ɦɨɠɧɨ ɨɩɪɟɞɟɥɢɬɶ
ɜ ɩɪɨɰɟɫɫɟ ɤɚɠɞɨɝɨ ɨɩɵɬɚ.                                                    ɬɨɥɶɤɨ ɷɮɮɟɤɬɢɜɧɭɸ ɷɧɟɪɝɢɸ ɚɤɬɢɜɚɰɢɢ ɢ ɷɮɮɟɤɬɢɜɧɵɣ ɩɪɟɞɷɤɫɩɨɧɟɧ-
                                                                             ɰɢɚɥɶɧɵɣ ɦɧɨɠɢɬɟɥɶ. Ɉɞɧɚɤɨ ɷɬɢ ɩɚɪɚɦɟɬɪɵ ɜɩɨɥɧɟ ɚɞɟɤɜɚɬɧɵ ɞɥɹ ɩɪɟɞ-
     ɋɞɟɥɚɣɬɟ ɜɵɜɨɞ ɨ ɡɚɜɢɫɢɦɨɫɬɢ ɫɤɨɪɨɫɬɢ ɪɟɚɤɰɢɢ ɨɬ ɬɟɦɩɟɪɚɬɭɪɵ.           ɫɤɚɡɚɧɢɹ ɫɤɨɪɨɫɬɢ ɪɟɚɤɰɢɢ ɩɪɢ ɪɚɡɥɢɱɧɵɯ ɬɟɦɩɟɪɚɬɭɪɚɯ.
Ɋɚɫɫɱɢɬɚɣɬɟ ɤɨɷɮɮɢɰɢɟɧɬ ȼɚɧɬ-Ƚɨɮɮɚ ɢɡɭɱɚɟɦɨɣ ɪɟɚɤɰɢɢ ɩɨ ɮɨɪɦɭɥɟ (1).
                                                                                 ɐɟɥɶ ɪɚɛɨɬɵ.
                                                                                 Ɉɩɪɟɞɟɥɢɬɶ ɷɮɮɟɤɬɢɜɧɭɸ ɷɧɟɪɝɢɸ ɚɤɬɢɜɚɰɢɢ ɪɟɚɤɰɢɢ ɨɤɢɫɥɟɧɢɹ
                                                                             ɢɨɞɢɞ-ɢɨɧɚ ɩɟɪɫɭɥɶɮɚɬɨɦ 2 KI + K2S2O8 = I2 + 2 K2SO4 (ɢɥɢ ɜ ɢɨɧɧɨ-
                     Ʌɚɛɨɪɚɬɨɪɧɚɹ ɪɚɛɨɬɚ ʋ 4                                 ɦɨɥɟɤɭɥɹɪɧɨɣ ɮɨɪɦɟ:     2 I- + S2082- = I2 + 2 SɈ42-).

      Ɉɩɪɟɞɟɥɟɧɢɟ ɷɮɮɟɤɬɢɜɧɨɣ ɷɧɟɪɝɢɢ ɚɤɬɢɜɚɰɢɢ                                    Ɉɛɨɪɭɞɨɜɚɧɢɟ.
            ɪɟɚɤɰɢɢ ɨɤɢɫɥɟɧɢɹ ɢɨɞɢɞ-ɢɨɧɚ                                           Ʉɨɦɩɶɸɬɟɪ ɫ ɢɡɦɟɪɢɬɟɥɶɧɵɦ ɛɥɨɤɨɦ; ɞɚɬɱɢɤ ɨɩɬɢɱɟɫɤɨɣ ɩɥɨɬɧɨɫɬɢ
                                                                             525 ɧɦ; ɬɟɪɦɨɞɚɬɱɢɤ, ɤɸɜɟɬɚ; ɦɚɝɧɢɬɧɚɹ ɦɟɲɚɥɤɚ; ɷɥɟɤɬɪɨɩɥɢɬɤɚ; ɬɟɪɦɨ-
    ȼɧɢɦɚɧɢɟ! Ɋɚɛɨɬɭ ɢɦɟɟɬ ɫɦɵɫɥ ɜɵɩɨɥɧɹɬɶ ɩɨɫɥɟ ɪɚɛɨɬɵ ʋ 2, ɢɛɨ             ɫɬɨɣɤɢɣ ɫɬɚɤɚɧɱɢɤ ɧɚ 100 ɢɥɢ 150 ɦɥ; ɦɟɪɧɚɹ ɤɨɥɛɚ ɧɚ 100 ɦɥ; ɲɩɪɢɰɵ ɧɚ
    ɨɧɚ ɜɵɩɨɥɧɹɟɬɫɹ ɚɧɚɥɨɝɢɱɧɨ, ɬɨɥɶɤɨ ɩɪɢ ɪɚɡɧɵɯ ɬɟɦɩɟɪɚɬɭɪɚɯ.              20 ɢ 5 ɦɥ.
    ȼ ɞɚɧɧɨɣ ɪɚɛɨɬɟ ɞɨɥɠɟɧ ɢɫɩɨɥɶɡɨɜɚɬɶɫɹ ɤɚɥɢɛɪɨɜɨɱɧɵɣ ɝɪɚɮɢɤ ɡɚɜɢ-
    ɫɢɦɨɫɬɢ ɨɩɬɢɱɟɫɤɨɣ ɩɥɨɬɧɨɫɬɢ ɪɚɫɬɜɨɪɚ ɨɬ ɤɨɧɰɟɧɬɪɚɰɢɢ ɣɨɞɚ,                  Ɋɟɚɤɬɢɜɵ.
    ɩɨɫɬɪɨɟɧɧɵɣ ɩɨ ɪɟɡɭɥɶɬɚɬɚɦ ɥɚɛɨɪɚɬɨɪɧɨɣ ɪɚɛɨɬɵ ʋ1. ȿɫɥɢ ɪɚɛɨ-                Ɋɚɫɬɜɨɪɵ ɄI 0.1Ɇ ɢ Ʉ2S2Ɉ8 0.1Ɇ, ɞɢɫɬɢɥɥɢɪɨɜɚɧɧɚɹ ɜɨɞɚ.
    ɬɚ ʋ1 ɧɟ ɜɵɩɨɥɧɹɥɚɫɶ, ɩɪɟɩɨɞɚɜɚɬɟɥɶ ɜɵɞɚɟɬ ɫɬɭɞɟɧɬɚɦ ɝɨɬɨɜɵɣ
    ɤɚɥɢɛɪɨɜɨɱɧɵɣ ɝɪɚɮɢɤ.                                                        ɉɨɞɝɨɬɨɜɤɚ ɢɡɦɟɪɢɬɟɥɶɧɨɣ ɫɢɫɬɟɦɵ.
                                                                                 Ʉ ɩɟɪɜɨɦɭ ɤɚɧɚɥɭ ɢɡɦɟɪɢɬɟɥɶɧɨɝɨ ɛɥɨɤɚ ɩɨɞɤɥɸɱɚɸɬ ɞɚɬɱɢɤ ɬɟɦɩɟɪɚ-
     Ɍɟɨɪɢɹ. ɉɪɢɛɥɢɠɟɧɧɨ ɡɚɜɢɫɢɦɨɫɬɶ ɫɤɨɪɨɫɬɢ ɪɟɚɤɰɢɢ ɨɬ ɬɟɦɩɟɪɚɬɭɪɵ         ɬɭɪɵ, ɤɨ ɜɬɨɪɨɦɭ – ɞɚɬɱɢɤ ɨɩɬɢɱɟɫɤɨɣ ɩɥɨɬɧɨɫɬɢ ɧɚ 525 ɧɦ. ɇɚ «ɪɚɛɨɱɟɦ
ɨɩɢɫɵɜɚɟɬɫɹ ɩɪɚɜɢɥɨɦ ȼɚɧɬ-Ƚɨɮɮɚ, ɜ ɫɨɨɬɜɟɬɫɬɜɢɢ ɫ ɤɨɬɨɪɵɦ ɩɪɢ ɩɨɜɵ-          ɫɬɨɥɟ» ɤɨɦɩɶɸɬɟɪɚ ɨɬɤɪɵɜɚɸɬ ɩɚɩɤɭ «ɉɪɚɤɬɢɤɭɦ ɩɨ ɨɛɳɟɣ ɯɢɦɢɢ», ɡɚɬɟɦ
ɲɟɧɢɢ ɬɟɦɩɟɪɚɬɭɪɵ ɧɚ ɤɚɠɞɵɟ ɞɟɫɹɬɶ ɝɪɚɞɭɫɨɜ ɫɤɨɪɨɫɬɶ ɪɟɚɤɰɢɢ ɜɨɡɪɚɫ-         ɮɚɣɥ «L-Micro:ɏɢɦɢɹ.ɟɯɟ». ȼ ɦɟɧɸ ɩɪɨɝɪɚɦɦɵ «L-Micro: ɏɢɦɢɹ» ɜɵɛɢ-
ɬɚɟɬ ɜ 2–4 ɪɚɡɚ. Ȼɨɥɟɟ ɫɬɪɨɝɨ ɡɚɜɢɫɢɦɨɫɬɶ ɫɤɨɪɨɫɬɢ ɪɟɚɤɰɢɢ ɨɬ ɬɟɦɩɟɪɚɬɭ-     ɪɚɸɬ ɩɭɧɤɬ «Ɂɚɜɢɫɢɦɨɫɬɶ ɫɤɨɪɨɫɬɢ ɪɟɚɤɰɢɢ ɨɤɢɫɥɟɧɢɹ ɢɨɞɢɞ-ɢɨɧɚ ɨɬ ɬɟɦ-
ɪɵ ɜɵɪɚɠɚɟɬɫɹ ɭɪɚɜɧɟɧɢɟɦ Ⱥɪɪɟɧɢɭɫɚ:                                          ɩɟɪɚɬɭɪɵ».
                          k = k0 ·exp(-Eɚɤɬ/ RT),                     (1)
ɝɞɟ k – ɤɨɧɫɬɚɧɬɚ ɫɤɨɪɨɫɬɢ ɪɟɚɤɰɢɢ ɜ ɤɢɧɟɬɢɱɟɫɤɨɦ ɭɪɚɜɧɟɧɢɢ, k0 – ɩɪɟɞɷɤɫ-         ɏɨɞ ɪɚɛɨɬɵ.
ɩɨɧɟɧɰɢɚɥɶɧɵɣ ɦɧɨɠɢɬɟɥɶ (ɤɨɧɫɬɚɧɬɚ ɫɤɨɪɨɫɬɢ, ɤɨɬɨɪɚɹ ɛɵɥɚ ɛɵ, ɟɫɥɢ ɛɵ              ɇɚ ɫɭɯɭɸ ɤɸɜɟɬɭ ɧɚɞɟɜɚɸɬ ɞɚɬɱɢɤ ɨɩɬɢɱɟɫɤɨɣ ɩɥɨɬɧɨɫɬɢ, ɫɬɚɜɹɬ ɧɚ
ɜɫɟ ɫɨɭɞɚɪɟɧɢɹ ɱɚɫɬɢɰ ɩɪɢɜɨɞɢɥɢ ɤ ɯɢɦɢɱɟɫɤɨɦɭ ɜɡɚɢɦɨɞɟɣɫɬɜɢɸ), Eɚɤɬ –        ɦɚɝɧɢɬɧɭɸ ɦɟɲɚɥɤɭ, ɩɨɝɪɭɠɚɸɬ ɬɟɪɦɨɞɚɬɱɢɤ ɢ ɹɤɨɪɶ ɦɟɲɚɥɤɢ.
ɷɧɟɪɝɢɹ ɚɤɬɢɜɚɰɢɢ ɪɟɚɤɰɢɢ, R = 8.314 Ⱦɠ/(ɦɨɥɶ·Ʉ) – ɭɧɢɜɟɪɫɚɥɶɧɚɹ ɝɚɡɨɜɚɹ           Ɉɬɦɟɪɹɸɬ ɫ ɩɨɦɨɳɶɸ ɲɩɪɢɰɚ 20 ɦɥ ɪɚɫɬɜɨɪɚ ɄI 0.1Ɇ, ɩɟɪɟɥɢɜɚɸɬ
ɩɨɫɬɨɹɧɧɚɹ, Ɍ – ɚɛɫɨɥɸɬɧɚɹ ɬɟɦɩɟɪɚɬɭɪɚ.                                      ɟɝɨ ɜ ɦɟɪɧɭɸ ɤɨɥɛɭ ɧɚ 100 ɦɥ ɢ ɞɨɜɨɞɹɬ ɨɛɴɟɦ ɪɚɫɬɜɨɪɚ ɞɨ ɦɟɬɤɢ ɞɢɫɬɢɥ-
      Ɉɩɪɟɞɟɥɹɹ ɧɚɱɚɥɶɧɭɸ ɫɤɨɪɨɫɬɶ ɪɟɚɤɰɢɢ ɩɪɢ ɪɚɡɧɵɯ ɬɟɦɩɟɪɚɬɭɪɚɯ,          ɥɢɪɨɜɚɧɧɨɣ ɜɨɞɨɣ. ɉɟɪɟɦɟɲɢɜɚɸɬ ɪɚɫɬɜɨɪ, ɩɨɤɚɱɢɜɚɹ ɤɨɥɛɭ, ɡɚɬɟɦ ɜɵɥɢ-
ɧɨ ɨɞɢɧɚɤɨɜɵɯ ɧɚɱɚɥɶɧɵɯ ɤɨɧɰɟɧɬɪɚɰɢɹɯ ɪɟɚɝɟɧɬɨɜ, ɦɨɠɧɨ ɜɵɱɢɫɥɢɬɶ             ɜɚɸɬ ɟɝɨ ɜ ɤɸɜɟɬɭ (ɧɟ ɫɞɜɢɝɚɬɶ ɞɚɬɱɢɤ ɨɩɬɢɱɟɫɤɨɣ ɩɥɨɬɧɨɫɬɢ!) ɢ ɧɚɫɬɪɚɢ-
ɷɧɟɪɝɢɸ ɚɤɬɢɜɚɰɢɢ. Ⱦɥɹ ɷɬɨɝɨ ɫɬɪɨɹɬ ɡɚɜɢɫɢɦɨɫɬɶ ɧɚɱɚɥɶɧɨɣ ɫɤɨɪɨɫɬɢ ɨɬ        ɜɚɸɬ ɞɚɬɱɢɤ (ɫɦ. ɫ. 6).
ɬɟɦɩɟɪɚɬɭɪɵ ɜ ɥɢɧɟɚɪɢɡɨɜɚɧɧɵɯ ɤɨɨɪɞɢɧɚɬɚɯ (ɧɚɬɭɪɚɥɶɧɵɣ ɥɨɝɚɪɢɮɦ                   Ɉɬɛɢɪɚɸɬ ɞɪɭɝɢɦ ɲɩɪɢɰɟɦ 5 ɦɥ ɪɚɫɬɜɨɪɚ Ʉ2S2Ɉ8, ɛɵɫɬɪɨ ɜɵɥɢɜɚɸɬ
ɫɤɨɪɨɫɬɢ ɨɬ ɨɛɪɚɬɧɨɣ ɬɟɦɩɟɪɚɬɭɪɵ):                                           ɟɝɨ ɜ ɤɸɜɟɬɭ (ɤɨɧɱɢɤ ɢɝɥɵ ɜ ɪɚɫɬɜɨɪ ɧɟ ɨɩɭɫɤɚɬɶ!) ɢ ɫɪɚɡɭ ɩɨɫɥɟ ɷɬɨɝɨ
                                    21                                                                           22