ВУЗ:
Составители:
Рубрика:
ɦɭ ɡɧɚɱɟɧɢɸ ɨɩɬɢɱɟɫɤɨɣ ɩɥɨɬɧɨɫɬɢ), ɤɨɬɨɪɭɸ ɪɚɫɫɱɢɬɵɜɚɸɬ ɩɨ ɤɚɥɢɛɪɨ-
ɜɨɱɧɨɦɭ ɝɪɚɮɢɤɭ, ɜɵɞɚɧɧɨɦɭ ɩɪɟɩɨɞɚɜɚɬɟɥɟɦ;
– ɫɬɪɨɹɬ ɝɪɚɮɢɤ ɡɚɜɢɫɢɦɨɫɬɢ ɤɨɧɰɟɧɬɪɚɰɢɢ ɣɨɞɚ ɨɬ ɜɪɟɦɟɧɢ;
– ɞɥɹ ɪɚɫɱɟɬɚ ɧɚɱɚɥɶɧɨɣ ɫɤɨɪɨɫɬɢ ɚɧɚɥɢɬɢɱɟɫɤɢ ɩɪɢɛɥɢɠɚɸɬ ɩɪɹɦɨɣ
ɩɟɪɜɵɟ ɞɜɚɞɰɚɬɶ ɬɨɱɟɤ. Ɍɚɧɝɟɧɫ ɭɝɥɚ ɧɚɤɥɨɧɚ ɩɨɥɭɱɟɧɧɨɣ ɩɪɹɦɨɣ ɢ ɛɭɞɟɬ
ɫɤɨɪɨɫɬɶɸ ɪɟɚɤɰɢɢ ɩɨ ɣɨɞɭ (ɫɥɟɞɢɬɟ ɡɚ ɪɚɡɦɟɪɧɨɫɬɹɦɢ);
– ɢɡ ɫɬɨɥɛɰɚ ɬɟɦɩɟɪɚɬɭɪ ɪɚɫɫɱɢɬɵɜɚɸɬ ɫɪɟɞɧɟɟ ɡɧɚɱɟɧɢɟ ɬɟɦɩɟɪɚɬɭɪɵ
ɜ ɩɪɨɰɟɫɫɟ ɤɚɠɞɨɝɨ ɨɩɵɬɚ.
ɋɞɟɥɚɣɬɟ ɜɵɜɨɞ ɨ ɡɚɜɢɫɢɦɨɫɬɢ ɫɤɨɪɨɫɬɢ ɪɟɚɤɰɢɢ ɨɬ ɬɟɦɩɟɪɚɬɭɪɵ.
Ɋɚɫɫɱɢɬɚɣɬɟ ɤɨɷɮɮɢɰɢɟɧɬ ȼɚɧɬ-Ƚɨɮɮɚ ɢɡɭɱɚɟɦɨɣ ɪɟɚɤɰɢɢ ɩɨ ɮɨɪɦɭɥɟ (1).
Ʌɚɛɨɪɚɬɨɪɧɚɹ ɪɚɛɨɬɚ ʋ 4
Ɉɩɪɟɞɟɥɟɧɢɟ ɷɮɮɟɤɬɢɜɧɨɣ ɷɧɟɪɝɢɢ ɚɤɬɢɜɚɰɢɢ
ɪɟɚɤɰɢɢ ɨɤɢɫɥɟɧɢɹ ɢɨɞɢɞ-ɢɨɧɚ
ȼɧɢɦɚɧɢɟ! Ɋɚɛɨɬɭ ɢɦɟɟɬ ɫɦɵɫɥ ɜɵɩɨɥɧɹɬɶ ɩɨɫɥɟ ɪɚɛɨɬɵ ʋ 2, ɢɛɨ
ɨɧɚ ɜɵɩɨɥɧɹɟɬɫɹ ɚɧɚɥɨɝɢɱɧɨ, ɬɨɥɶɤɨ ɩɪɢ ɪɚɡɧɵɯ ɬɟɦɩɟɪɚɬɭɪɚɯ.
ȼ ɞɚɧɧɨɣ ɪɚɛɨɬɟ ɞɨɥɠɟɧ ɢɫɩɨɥɶɡɨɜɚɬɶɫɹ ɤɚɥɢɛɪɨɜɨɱɧɵɣ ɝɪɚɮɢɤ ɡɚɜɢ-
ɫɢɦɨɫɬɢ ɨɩɬɢɱɟɫɤɨɣ ɩɥɨɬɧɨɫɬɢ ɪɚɫɬɜɨɪɚ ɨɬ ɤɨɧɰɟɧɬɪɚɰɢɢ ɣɨɞɚ,
ɩɨɫɬɪɨɟɧɧɵɣ ɩɨ ɪɟɡɭɥɶɬɚɬɚɦ ɥɚɛɨɪɚɬɨɪɧɨɣ ɪɚɛɨɬɵ ʋ1. ȿɫɥɢ ɪɚɛɨ-
ɬɚ ʋ1 ɧɟ ɜɵɩɨɥɧɹɥɚɫɶ, ɩɪɟɩɨɞɚɜɚɬɟɥɶ ɜɵɞɚɟɬ ɫɬɭɞɟɧɬɚɦ ɝɨɬɨɜɵɣ
ɤɚɥɢɛɪɨɜɨɱɧɵɣ ɝɪɚɮɢɤ.
Ɍɟɨɪɢɹ. ɉɪɢɛɥɢɠɟɧɧɨ ɡɚɜɢɫɢɦɨɫɬɶ ɫɤɨɪɨɫɬɢ ɪɟɚɤɰɢɢ ɨɬ ɬɟɦɩɟɪɚɬɭɪɵ
ɨɩɢɫɵɜɚɟɬɫɹ ɩɪɚɜɢɥɨɦ ȼɚɧɬ-Ƚɨɮɮɚ, ɜ ɫɨɨɬɜɟɬɫɬɜɢɢ ɫ ɤɨɬɨɪɵɦ ɩɪɢ ɩɨɜɵ-
ɲɟɧɢɢ ɬɟɦɩɟɪɚɬɭɪɵ ɧɚ ɤɚɠɞɵɟ ɞɟɫɹɬɶ ɝɪɚɞɭɫɨɜ ɫɤɨɪɨɫɬɶ ɪɟɚɤɰɢɢ ɜɨɡɪɚɫ-
ɬɚɟɬ ɜ 2–4 ɪɚɡɚ. Ȼɨɥɟɟ ɫɬɪɨɝɨ ɡɚɜɢɫɢɦɨɫɬɶ ɫɤɨɪɨɫɬɢ ɪɟɚɤɰɢɢ ɨɬ ɬɟɦɩɟɪɚɬɭ-
ɪɵ ɜɵɪɚɠɚɟɬɫɹ ɭɪɚɜɧɟɧɢɟɦ Ⱥɪɪɟɧɢɭɫɚ:
k = k ·exp(-E
0 ɚɤɬ
/ RT), (1)
ɝɞɟ k – ɤɨɧɫɬɚɧɬɚ ɫɤɨɪɨɫɬɢ ɪɟɚɤɰɢɢ ɜ ɤɢɧɟɬɢɱɟɫɤɨɦ ɭɪɚɜɧɟɧɢɢ, k–ɩɪɟɞɷɤɫ-
0
ɩɨɧɟɧɰɢɚɥɶɧɵɣ ɦɧɨɠɢɬɟɥɶ (ɤɨɧɫɬɚɧɬɚ ɫɤɨɪɨɫɬɢ, ɤɨɬɨɪɚɹ ɛɵɥɚ ɛɵ, ɟɫɥɢ ɛɵ
ɜɫɟ ɫɨɭɞɚɪɟɧɢɹ ɱɚɫɬɢɰ ɩɪɢɜɨɞɢɥɢ ɤ ɯɢɦɢɱɟɫɤɨɦɭ ɜɡɚɢɦɨɞɟɣɫɬɜɢɸ), E
ɚɤɬ
–
ɷɧɟɪɝɢɹ ɚɤɬɢɜɚɰɢɢ ɪɟɚɤɰɢɢ, R = 8.314 Ⱦɠ/(ɦɨɥɶ·Ʉ) – ɭɧɢɜɟɪɫɚɥɶɧɚɹ ɝɚɡɨɜɚɹ
ɩɨɫɬɨɹɧɧɚɹ, Ɍ – ɚɛɫɨɥɸɬɧɚɹ ɬɟɦɩɟɪɚɬɭɪɚ.
Ɉɩɪɟɞɟɥɹɹ ɧɚɱɚɥɶɧɭɸ ɫɤɨɪɨɫɬɶ ɪɟɚɤɰɢɢ ɩɪɢ ɪɚɡɧɵɯ ɬɟɦɩɟɪɚɬɭɪɚɯ,
ɧɨ ɨɞɢɧɚɤɨɜɵɯ ɧɚɱɚɥɶɧɵɯ ɤɨɧɰɟɧɬɪɚɰɢɹɯ ɪɟɚɝɟɧɬɨɜ, ɦɨɠɧɨ ɜɵɱɢɫɥɢɬɶ
ɷɧɟɪɝɢɸ ɚɤɬɢɜɚɰɢɢ. Ⱦɥɹ ɷɬɨɝɨ ɫɬɪɨɹɬ ɡɚɜɢɫɢɦɨɫɬɶ ɧɚɱɚɥɶɧɨɣ ɫɤɨɪɨɫɬɢ ɨɬ
ɬɟɦɩɟɪɚɬɭɪɵ ɜ ɥɢɧɟɚɪɢɡɨɜɚɧɧɵɯ ɤɨɨɪɞɢɧɚɬɚɯ (ɧɚɬɭɪɚɥɶɧɵɣ ɥɨɝɚɪɢɮɦ
ɫɤɨɪɨɫɬɢ ɨɬ ɨɛɪɚɬɧɨɣ ɬɟɦɩɟɪɚɬɭɪɵ):
21
ln v = (lnk
0
–
6
n·lnC) – E
ii ɚɤɬ
/RT (2)
ɝɞɟ ɋ , – ɤɨɧɰɟɧɬɪɚɰɢɹ i-ɝɨ ɤɨɦɩɨɧɟɧɬɚ, n – ɩɨɪɹɞɨɤ ɪɟɚɤɰɢɢ ɩɨ ɷɬɨɦɭ ɤɨɦ-
ii
ɩɨɧɟɧɬɭ. Ɍɚɧɝɟɧɫ ɭɝɥɚ ɧɚɤɥɨɧɚ ɩɨɥɭɱɟɧɧɨɣ ɩɪɹɦɨɣ ɪɚɜɟɧ – E
ɚɤɬ
/R..
ɉɨɫɤɨɥɶɤɭ ɛɨɥɶɲɢɧɫɬɜɨ ɪɟɚɤɰɢɣ – ɦɧɨɝɨɫɬɚɞɢɣɧɵɟ, ɝɨɜɨɪɢɬɶ ɨɛ ɢɯ
ɷɧɟɪɝɢɢ ɚɤɬɢɜɚɰɢɢ ɧɟɤɨɪɪɟɤɬɧɨ, ɩɨɫɤɨɥɶɤɭ ɤɚɤ ɷɧɟɪɝɢɹ ɚɤɬɢɜɚɰɢɢ, ɬɚɤ ɢ
ɩɪɟɞɷɤɫɩɨɧɟɧɰɢɚɥɶɧɵɣ ɦɧɨɠɢɬɟɥɶ – ɩɚɪɚɦɟɬɪɵ ɨɬɞɟɥɶɧɨɣ ɫɬɚɞɢɢ. ɉɨɷɬɨ-
ɦɭ ɞɥɹ ɦɧɨɝɨɫɬɚɞɢɣɧɵɯ ɪɟɚɤɰɢɣ ɷɤɫɩɟɪɢɦɟɧɬɚɥɶɧɨ ɦɨɠɧɨ ɨɩɪɟɞɟɥɢɬɶ
ɬɨɥɶɤɨ ɷɮɮɟɤɬɢɜɧɭɸ ɷɧɟɪɝɢɸ ɚɤɬɢɜɚɰɢɢ ɢ ɷɮɮɟɤɬɢɜɧɵɣ ɩɪɟɞɷɤɫɩɨɧɟɧ-
ɰɢɚɥɶɧɵɣ ɦɧɨɠɢɬɟɥɶ. Ɉɞɧɚɤɨ ɷɬɢ ɩɚɪɚɦɟɬɪɵ ɜɩɨɥɧɟ ɚɞɟɤɜɚɬɧɵ ɞɥɹ ɩɪɟɞ-
ɫɤɚɡɚɧɢɹ ɫɤɨɪɨɫɬɢ ɪɟɚɤɰɢɢ ɩɪɢ ɪɚɡɥɢɱɧɵɯ ɬɟɦɩɟɪɚɬɭɪɚɯ.
ɐɟɥɶ ɪɚɛɨɬɵ.
Ɉɩɪɟɞɟɥɢɬɶ ɷɮɮɟɤɬɢɜɧɭɸ ɷɧɟɪɝɢɸ ɚɤɬɢɜɚɰɢɢ ɪɟɚɤɰɢɢ ɨɤɢɫɥɟɧɢɹ
ɢɨɞɢɞ-ɢɨɧɚ ɩɟɪɫɭɥɶɮɚɬɨɦ 2 KI + K
2
S
2
O
8
= I
2
+ 2 K
2
SO
4
(ɢɥɢ ɜ ɢɨɧɧɨ-
-
ɦɨɥɟɤɭɥɹɪɧɨɣ ɮɨɪɦɟ: 2 I + S
2
0
8
2-
= I
2
+ 2 SɈ
4
2-
).
Ɉɛɨɪɭɞɨɜɚɧɢɟ.
Ʉɨɦɩɶɸɬɟɪ ɫ ɢɡɦɟɪɢɬɟɥɶɧɵɦ ɛɥɨɤɨɦ; ɞɚɬɱɢɤ ɨɩɬɢɱɟɫɤɨɣ ɩɥɨɬɧɨɫɬɢ
525 ɧɦ; ɬɟɪɦɨɞɚɬɱɢɤ, ɤɸɜɟɬɚ; ɦɚɝɧɢɬɧɚɹ ɦɟɲɚɥɤɚ; ɷɥɟɤɬɪɨɩɥɢɬɤɚ; ɬɟɪɦɨ-
ɫɬɨɣɤɢɣ ɫɬɚɤɚɧɱɢɤ ɧɚ 100 ɢɥɢ 150 ɦɥ; ɦɟɪɧɚɹ ɤɨɥɛɚ ɧɚ 100 ɦɥ; ɲɩɪɢɰɵ ɧɚ
20 ɢ 5 ɦɥ.
Ɋɟɚɤɬɢɜɵ.
Ɋɚɫɬɜɨɪɵ ɄI 0.1ɆɢɄ
2
S
2
Ɉ
8
0.1Ɇ, ɞɢɫɬɢɥɥɢɪɨɜɚɧɧɚɹ ɜɨɞɚ.
ɉɨɞɝɨɬɨɜɤɚ ɢɡɦɟɪɢɬɟɥɶɧɨɣ ɫɢɫɬɟɦɵ.
Ʉ ɩɟɪɜɨɦɭ ɤɚɧɚɥɭ ɢɡɦɟɪɢɬɟɥɶɧɨɝɨ ɛɥɨɤɚ ɩɨɞɤɥɸɱɚɸɬ ɞɚɬɱɢɤ ɬɟɦɩɟɪɚ-
ɬɭɪɵ, ɤɨ ɜɬɨɪɨɦɭ – ɞɚɬɱɢɤ ɨɩɬɢɱɟɫɤɨɣ ɩɥɨɬɧɨɫɬɢ ɧɚ 525 ɧɦ. ɇɚ «ɪɚɛɨɱɟɦ
ɫɬɨɥɟ» ɤɨɦɩɶɸɬɟɪɚ ɨɬɤɪɵɜɚɸɬ ɩɚɩɤɭ «ɉɪɚɤɬɢɤɭɦ ɩɨ ɨɛɳɟɣ ɯɢɦɢɢ», ɡɚɬɟɦ
ɮɚɣɥ «L-Micro:ɏɢɦɢɹ.ɟɯɟ». ȼ ɦɟɧɸ ɩɪɨɝɪɚɦɦɵ «L-Micro: ɏɢɦɢɹ» ɜɵɛɢ-
ɪɚɸɬ ɩɭɧɤɬ «Ɂɚɜɢɫɢɦɨɫɬɶ ɫɤɨɪɨɫɬɢ ɪɟɚɤɰɢɢ ɨɤɢɫɥɟɧɢɹ ɢɨɞɢɞ-ɢɨɧɚ ɨɬ ɬɟɦ-
ɩɟɪɚɬɭɪɵ».
ɏɨɞ ɪɚɛɨɬɵ.
ɇɚ ɫɭɯɭɸ ɤɸɜɟɬɭ ɧɚɞɟɜɚɸɬ ɞɚɬɱɢɤ ɨɩɬɢɱɟɫɤɨɣ ɩɥɨɬɧɨɫɬɢ, ɫɬɚɜɹɬ ɧɚ
ɦɚɝɧɢɬɧɭɸ ɦɟɲɚɥɤɭ, ɩɨɝɪɭɠɚɸɬ ɬɟɪɦɨɞɚɬɱɢɤ ɢ ɹɤɨɪɶ ɦɟɲɚɥɤɢ.
Ɉɬɦɟɪɹɸɬ ɫ ɩɨɦɨɳɶɸ ɲɩɪɢɰɚ 20 ɦɥ ɪɚɫɬɜɨɪɚ ɄI 0.1Ɇ, ɩɟɪɟɥɢɜɚɸɬ
ɟɝɨ ɜ ɦɟɪɧɭɸ ɤɨɥɛɭ ɧɚ 100 ɦɥ ɢ ɞɨɜɨɞɹɬ ɨɛɴɟɦ ɪɚɫɬɜɨɪɚ ɞɨ ɦɟɬɤɢ ɞɢɫɬɢɥ-
ɥɢɪɨɜɚɧɧɨɣ ɜɨɞɨɣ. ɉɟɪɟɦɟɲɢɜɚɸɬ ɪɚɫɬɜɨɪ, ɩɨɤɚɱɢɜɚɹ ɤɨɥɛɭ, ɡɚɬɟɦ ɜɵɥɢ-
ɜɚɸɬ ɟɝɨ ɜ ɤɸɜɟɬɭ (ɧɟ ɫɞɜɢɝɚɬɶ ɞɚɬɱɢɤ ɨɩɬɢɱɟɫɤɨɣ ɩɥɨɬɧɨɫɬɢ!) ɢ ɧɚɫɬɪɚɢ-
ɜɚɸɬ ɞɚɬɱɢɤ (ɫɦ. ɫ. 6).
Ɉɬɛɢɪɚɸɬ ɞɪɭɝɢɦ ɲɩɪɢɰɟɦ 5 ɦɥ ɪɚɫɬɜɨɪɚ Ʉ
2
S
2
Ɉ
8
, ɛɵɫɬɪɨ ɜɵɥɢɜɚɸɬ
ɟɝɨ ɜ ɤɸɜɟɬɭ (ɤɨɧɱɢɤ ɢɝɥɵ ɜ ɪɚɫɬɜɨɪ ɧɟ ɨɩɭɫɤɚɬɶ!) ɢ ɫɪɚɡɭ ɩɨɫɥɟ ɷɬɨɝɨ
22
ɦɭ ɡɧɚɱɟɧɢɸ ɨɩɬɢɱɟɫɤɨɣ ɩɥɨɬɧɨɫɬɢ), ɤɨɬɨɪɭɸ ɪɚɫɫɱɢɬɵɜɚɸɬ ɩɨ ɤɚɥɢɛɪɨ- ln v = (lnk0 – 6 ni ·lnCi) – Eɚɤɬ/RT (2) ɜɨɱɧɨɦɭ ɝɪɚɮɢɤɭ, ɜɵɞɚɧɧɨɦɭ ɩɪɟɩɨɞɚɜɚɬɟɥɟɦ; ɝɞɟ ɋi, – ɤɨɧɰɟɧɬɪɚɰɢɹ i-ɝɨ ɤɨɦɩɨɧɟɧɬɚ, ni – ɩɨɪɹɞɨɤ ɪɟɚɤɰɢɢ ɩɨ ɷɬɨɦɭ ɤɨɦ- – ɫɬɪɨɹɬ ɝɪɚɮɢɤ ɡɚɜɢɫɢɦɨɫɬɢ ɤɨɧɰɟɧɬɪɚɰɢɢ ɣɨɞɚ ɨɬ ɜɪɟɦɟɧɢ; ɩɨɧɟɧɬɭ. Ɍɚɧɝɟɧɫ ɭɝɥɚ ɧɚɤɥɨɧɚ ɩɨɥɭɱɟɧɧɨɣ ɩɪɹɦɨɣ ɪɚɜɟɧ – Eɚɤɬ /R.. – ɞɥɹ ɪɚɫɱɟɬɚ ɧɚɱɚɥɶɧɨɣ ɫɤɨɪɨɫɬɢ ɚɧɚɥɢɬɢɱɟɫɤɢ ɩɪɢɛɥɢɠɚɸɬ ɩɪɹɦɨɣ ɉɨɫɤɨɥɶɤɭ ɛɨɥɶɲɢɧɫɬɜɨ ɪɟɚɤɰɢɣ – ɦɧɨɝɨɫɬɚɞɢɣɧɵɟ, ɝɨɜɨɪɢɬɶ ɨɛ ɢɯ ɩɟɪɜɵɟ ɞɜɚɞɰɚɬɶ ɬɨɱɟɤ. Ɍɚɧɝɟɧɫ ɭɝɥɚ ɧɚɤɥɨɧɚ ɩɨɥɭɱɟɧɧɨɣ ɩɪɹɦɨɣ ɢ ɛɭɞɟɬ ɷɧɟɪɝɢɢ ɚɤɬɢɜɚɰɢɢ ɧɟɤɨɪɪɟɤɬɧɨ, ɩɨɫɤɨɥɶɤɭ ɤɚɤ ɷɧɟɪɝɢɹ ɚɤɬɢɜɚɰɢɢ, ɬɚɤ ɢ ɫɤɨɪɨɫɬɶɸ ɪɟɚɤɰɢɢ ɩɨ ɣɨɞɭ (ɫɥɟɞɢɬɟ ɡɚ ɪɚɡɦɟɪɧɨɫɬɹɦɢ); ɩɪɟɞɷɤɫɩɨɧɟɧɰɢɚɥɶɧɵɣ ɦɧɨɠɢɬɟɥɶ – ɩɚɪɚɦɟɬɪɵ ɨɬɞɟɥɶɧɨɣ ɫɬɚɞɢɢ. ɉɨɷɬɨ- – ɢɡ ɫɬɨɥɛɰɚ ɬɟɦɩɟɪɚɬɭɪ ɪɚɫɫɱɢɬɵɜɚɸɬ ɫɪɟɞɧɟɟ ɡɧɚɱɟɧɢɟ ɬɟɦɩɟɪɚɬɭɪɵ ɦɭ ɞɥɹ ɦɧɨɝɨɫɬɚɞɢɣɧɵɯ ɪɟɚɤɰɢɣ ɷɤɫɩɟɪɢɦɟɧɬɚɥɶɧɨ ɦɨɠɧɨ ɨɩɪɟɞɟɥɢɬɶ ɜ ɩɪɨɰɟɫɫɟ ɤɚɠɞɨɝɨ ɨɩɵɬɚ. ɬɨɥɶɤɨ ɷɮɮɟɤɬɢɜɧɭɸ ɷɧɟɪɝɢɸ ɚɤɬɢɜɚɰɢɢ ɢ ɷɮɮɟɤɬɢɜɧɵɣ ɩɪɟɞɷɤɫɩɨɧɟɧ- ɰɢɚɥɶɧɵɣ ɦɧɨɠɢɬɟɥɶ. Ɉɞɧɚɤɨ ɷɬɢ ɩɚɪɚɦɟɬɪɵ ɜɩɨɥɧɟ ɚɞɟɤɜɚɬɧɵ ɞɥɹ ɩɪɟɞ- ɋɞɟɥɚɣɬɟ ɜɵɜɨɞ ɨ ɡɚɜɢɫɢɦɨɫɬɢ ɫɤɨɪɨɫɬɢ ɪɟɚɤɰɢɢ ɨɬ ɬɟɦɩɟɪɚɬɭɪɵ. ɫɤɚɡɚɧɢɹ ɫɤɨɪɨɫɬɢ ɪɟɚɤɰɢɢ ɩɪɢ ɪɚɡɥɢɱɧɵɯ ɬɟɦɩɟɪɚɬɭɪɚɯ. Ɋɚɫɫɱɢɬɚɣɬɟ ɤɨɷɮɮɢɰɢɟɧɬ ȼɚɧɬ-Ƚɨɮɮɚ ɢɡɭɱɚɟɦɨɣ ɪɟɚɤɰɢɢ ɩɨ ɮɨɪɦɭɥɟ (1). ɐɟɥɶ ɪɚɛɨɬɵ. Ɉɩɪɟɞɟɥɢɬɶ ɷɮɮɟɤɬɢɜɧɭɸ ɷɧɟɪɝɢɸ ɚɤɬɢɜɚɰɢɢ ɪɟɚɤɰɢɢ ɨɤɢɫɥɟɧɢɹ ɢɨɞɢɞ-ɢɨɧɚ ɩɟɪɫɭɥɶɮɚɬɨɦ 2 KI + K2S2O8 = I2 + 2 K2SO4 (ɢɥɢ ɜ ɢɨɧɧɨ- Ʌɚɛɨɪɚɬɨɪɧɚɹ ɪɚɛɨɬɚ ʋ 4 ɦɨɥɟɤɭɥɹɪɧɨɣ ɮɨɪɦɟ: 2 I- + S2082- = I2 + 2 SɈ42-). Ɉɩɪɟɞɟɥɟɧɢɟ ɷɮɮɟɤɬɢɜɧɨɣ ɷɧɟɪɝɢɢ ɚɤɬɢɜɚɰɢɢ Ɉɛɨɪɭɞɨɜɚɧɢɟ. ɪɟɚɤɰɢɢ ɨɤɢɫɥɟɧɢɹ ɢɨɞɢɞ-ɢɨɧɚ Ʉɨɦɩɶɸɬɟɪ ɫ ɢɡɦɟɪɢɬɟɥɶɧɵɦ ɛɥɨɤɨɦ; ɞɚɬɱɢɤ ɨɩɬɢɱɟɫɤɨɣ ɩɥɨɬɧɨɫɬɢ 525 ɧɦ; ɬɟɪɦɨɞɚɬɱɢɤ, ɤɸɜɟɬɚ; ɦɚɝɧɢɬɧɚɹ ɦɟɲɚɥɤɚ; ɷɥɟɤɬɪɨɩɥɢɬɤɚ; ɬɟɪɦɨ- ȼɧɢɦɚɧɢɟ! Ɋɚɛɨɬɭ ɢɦɟɟɬ ɫɦɵɫɥ ɜɵɩɨɥɧɹɬɶ ɩɨɫɥɟ ɪɚɛɨɬɵ ʋ 2, ɢɛɨ ɫɬɨɣɤɢɣ ɫɬɚɤɚɧɱɢɤ ɧɚ 100 ɢɥɢ 150 ɦɥ; ɦɟɪɧɚɹ ɤɨɥɛɚ ɧɚ 100 ɦɥ; ɲɩɪɢɰɵ ɧɚ ɨɧɚ ɜɵɩɨɥɧɹɟɬɫɹ ɚɧɚɥɨɝɢɱɧɨ, ɬɨɥɶɤɨ ɩɪɢ ɪɚɡɧɵɯ ɬɟɦɩɟɪɚɬɭɪɚɯ. 20 ɢ 5 ɦɥ. ȼ ɞɚɧɧɨɣ ɪɚɛɨɬɟ ɞɨɥɠɟɧ ɢɫɩɨɥɶɡɨɜɚɬɶɫɹ ɤɚɥɢɛɪɨɜɨɱɧɵɣ ɝɪɚɮɢɤ ɡɚɜɢ- ɫɢɦɨɫɬɢ ɨɩɬɢɱɟɫɤɨɣ ɩɥɨɬɧɨɫɬɢ ɪɚɫɬɜɨɪɚ ɨɬ ɤɨɧɰɟɧɬɪɚɰɢɢ ɣɨɞɚ, Ɋɟɚɤɬɢɜɵ. ɩɨɫɬɪɨɟɧɧɵɣ ɩɨ ɪɟɡɭɥɶɬɚɬɚɦ ɥɚɛɨɪɚɬɨɪɧɨɣ ɪɚɛɨɬɵ ʋ1. ȿɫɥɢ ɪɚɛɨ- Ɋɚɫɬɜɨɪɵ ɄI 0.1Ɇ ɢ Ʉ2S2Ɉ8 0.1Ɇ, ɞɢɫɬɢɥɥɢɪɨɜɚɧɧɚɹ ɜɨɞɚ. ɬɚ ʋ1 ɧɟ ɜɵɩɨɥɧɹɥɚɫɶ, ɩɪɟɩɨɞɚɜɚɬɟɥɶ ɜɵɞɚɟɬ ɫɬɭɞɟɧɬɚɦ ɝɨɬɨɜɵɣ ɤɚɥɢɛɪɨɜɨɱɧɵɣ ɝɪɚɮɢɤ. ɉɨɞɝɨɬɨɜɤɚ ɢɡɦɟɪɢɬɟɥɶɧɨɣ ɫɢɫɬɟɦɵ. Ʉ ɩɟɪɜɨɦɭ ɤɚɧɚɥɭ ɢɡɦɟɪɢɬɟɥɶɧɨɝɨ ɛɥɨɤɚ ɩɨɞɤɥɸɱɚɸɬ ɞɚɬɱɢɤ ɬɟɦɩɟɪɚ- Ɍɟɨɪɢɹ. ɉɪɢɛɥɢɠɟɧɧɨ ɡɚɜɢɫɢɦɨɫɬɶ ɫɤɨɪɨɫɬɢ ɪɟɚɤɰɢɢ ɨɬ ɬɟɦɩɟɪɚɬɭɪɵ ɬɭɪɵ, ɤɨ ɜɬɨɪɨɦɭ – ɞɚɬɱɢɤ ɨɩɬɢɱɟɫɤɨɣ ɩɥɨɬɧɨɫɬɢ ɧɚ 525 ɧɦ. ɇɚ «ɪɚɛɨɱɟɦ ɨɩɢɫɵɜɚɟɬɫɹ ɩɪɚɜɢɥɨɦ ȼɚɧɬ-Ƚɨɮɮɚ, ɜ ɫɨɨɬɜɟɬɫɬɜɢɢ ɫ ɤɨɬɨɪɵɦ ɩɪɢ ɩɨɜɵ- ɫɬɨɥɟ» ɤɨɦɩɶɸɬɟɪɚ ɨɬɤɪɵɜɚɸɬ ɩɚɩɤɭ «ɉɪɚɤɬɢɤɭɦ ɩɨ ɨɛɳɟɣ ɯɢɦɢɢ», ɡɚɬɟɦ ɲɟɧɢɢ ɬɟɦɩɟɪɚɬɭɪɵ ɧɚ ɤɚɠɞɵɟ ɞɟɫɹɬɶ ɝɪɚɞɭɫɨɜ ɫɤɨɪɨɫɬɶ ɪɟɚɤɰɢɢ ɜɨɡɪɚɫ- ɮɚɣɥ «L-Micro:ɏɢɦɢɹ.ɟɯɟ». ȼ ɦɟɧɸ ɩɪɨɝɪɚɦɦɵ «L-Micro: ɏɢɦɢɹ» ɜɵɛɢ- ɬɚɟɬ ɜ 2–4 ɪɚɡɚ. Ȼɨɥɟɟ ɫɬɪɨɝɨ ɡɚɜɢɫɢɦɨɫɬɶ ɫɤɨɪɨɫɬɢ ɪɟɚɤɰɢɢ ɨɬ ɬɟɦɩɟɪɚɬɭ- ɪɚɸɬ ɩɭɧɤɬ «Ɂɚɜɢɫɢɦɨɫɬɶ ɫɤɨɪɨɫɬɢ ɪɟɚɤɰɢɢ ɨɤɢɫɥɟɧɢɹ ɢɨɞɢɞ-ɢɨɧɚ ɨɬ ɬɟɦ- ɪɵ ɜɵɪɚɠɚɟɬɫɹ ɭɪɚɜɧɟɧɢɟɦ Ⱥɪɪɟɧɢɭɫɚ: ɩɟɪɚɬɭɪɵ». k = k0 ·exp(-Eɚɤɬ/ RT), (1) ɝɞɟ k – ɤɨɧɫɬɚɧɬɚ ɫɤɨɪɨɫɬɢ ɪɟɚɤɰɢɢ ɜ ɤɢɧɟɬɢɱɟɫɤɨɦ ɭɪɚɜɧɟɧɢɢ, k0 – ɩɪɟɞɷɤɫ- ɏɨɞ ɪɚɛɨɬɵ. ɩɨɧɟɧɰɢɚɥɶɧɵɣ ɦɧɨɠɢɬɟɥɶ (ɤɨɧɫɬɚɧɬɚ ɫɤɨɪɨɫɬɢ, ɤɨɬɨɪɚɹ ɛɵɥɚ ɛɵ, ɟɫɥɢ ɛɵ ɇɚ ɫɭɯɭɸ ɤɸɜɟɬɭ ɧɚɞɟɜɚɸɬ ɞɚɬɱɢɤ ɨɩɬɢɱɟɫɤɨɣ ɩɥɨɬɧɨɫɬɢ, ɫɬɚɜɹɬ ɧɚ ɜɫɟ ɫɨɭɞɚɪɟɧɢɹ ɱɚɫɬɢɰ ɩɪɢɜɨɞɢɥɢ ɤ ɯɢɦɢɱɟɫɤɨɦɭ ɜɡɚɢɦɨɞɟɣɫɬɜɢɸ), Eɚɤɬ – ɦɚɝɧɢɬɧɭɸ ɦɟɲɚɥɤɭ, ɩɨɝɪɭɠɚɸɬ ɬɟɪɦɨɞɚɬɱɢɤ ɢ ɹɤɨɪɶ ɦɟɲɚɥɤɢ. ɷɧɟɪɝɢɹ ɚɤɬɢɜɚɰɢɢ ɪɟɚɤɰɢɢ, R = 8.314 Ⱦɠ/(ɦɨɥɶ·Ʉ) – ɭɧɢɜɟɪɫɚɥɶɧɚɹ ɝɚɡɨɜɚɹ Ɉɬɦɟɪɹɸɬ ɫ ɩɨɦɨɳɶɸ ɲɩɪɢɰɚ 20 ɦɥ ɪɚɫɬɜɨɪɚ ɄI 0.1Ɇ, ɩɟɪɟɥɢɜɚɸɬ ɩɨɫɬɨɹɧɧɚɹ, Ɍ – ɚɛɫɨɥɸɬɧɚɹ ɬɟɦɩɟɪɚɬɭɪɚ. ɟɝɨ ɜ ɦɟɪɧɭɸ ɤɨɥɛɭ ɧɚ 100 ɦɥ ɢ ɞɨɜɨɞɹɬ ɨɛɴɟɦ ɪɚɫɬɜɨɪɚ ɞɨ ɦɟɬɤɢ ɞɢɫɬɢɥ- Ɉɩɪɟɞɟɥɹɹ ɧɚɱɚɥɶɧɭɸ ɫɤɨɪɨɫɬɶ ɪɟɚɤɰɢɢ ɩɪɢ ɪɚɡɧɵɯ ɬɟɦɩɟɪɚɬɭɪɚɯ, ɥɢɪɨɜɚɧɧɨɣ ɜɨɞɨɣ. ɉɟɪɟɦɟɲɢɜɚɸɬ ɪɚɫɬɜɨɪ, ɩɨɤɚɱɢɜɚɹ ɤɨɥɛɭ, ɡɚɬɟɦ ɜɵɥɢ- ɧɨ ɨɞɢɧɚɤɨɜɵɯ ɧɚɱɚɥɶɧɵɯ ɤɨɧɰɟɧɬɪɚɰɢɹɯ ɪɟɚɝɟɧɬɨɜ, ɦɨɠɧɨ ɜɵɱɢɫɥɢɬɶ ɜɚɸɬ ɟɝɨ ɜ ɤɸɜɟɬɭ (ɧɟ ɫɞɜɢɝɚɬɶ ɞɚɬɱɢɤ ɨɩɬɢɱɟɫɤɨɣ ɩɥɨɬɧɨɫɬɢ!) ɢ ɧɚɫɬɪɚɢ- ɷɧɟɪɝɢɸ ɚɤɬɢɜɚɰɢɢ. Ⱦɥɹ ɷɬɨɝɨ ɫɬɪɨɹɬ ɡɚɜɢɫɢɦɨɫɬɶ ɧɚɱɚɥɶɧɨɣ ɫɤɨɪɨɫɬɢ ɨɬ ɜɚɸɬ ɞɚɬɱɢɤ (ɫɦ. ɫ. 6). ɬɟɦɩɟɪɚɬɭɪɵ ɜ ɥɢɧɟɚɪɢɡɨɜɚɧɧɵɯ ɤɨɨɪɞɢɧɚɬɚɯ (ɧɚɬɭɪɚɥɶɧɵɣ ɥɨɝɚɪɢɮɦ Ɉɬɛɢɪɚɸɬ ɞɪɭɝɢɦ ɲɩɪɢɰɟɦ 5 ɦɥ ɪɚɫɬɜɨɪɚ Ʉ2S2Ɉ8, ɛɵɫɬɪɨ ɜɵɥɢɜɚɸɬ ɫɤɨɪɨɫɬɢ ɨɬ ɨɛɪɚɬɧɨɣ ɬɟɦɩɟɪɚɬɭɪɵ): ɟɝɨ ɜ ɤɸɜɟɬɭ (ɤɨɧɱɢɤ ɢɝɥɵ ɜ ɪɚɫɬɜɨɪ ɧɟ ɨɩɭɫɤɚɬɶ!) ɢ ɫɪɚɡɭ ɩɨɫɥɟ ɷɬɨɝɨ 21 22