Аналитическая геометрия и линейная алгебра. Умнов А.Е. - 125 стр.

UptoLike

Составители: 

Рубрика: 

cÈÏËã

¯Ëº¯ÈϺmÈÓÒ«¹ãº°}º°Ò
ãȰӺ˺¯ËäËäÈ¯ÒÈº¯ººÓÈãÓºº¹¯Ëº¯ÈϺmÈÓÒ«
Q
mº¯º
Óº¯äÒ¯ºmÈÓÓº® °Ò°ËäË }ºº¯ÒÓÈ ÒäËË
cos sin
sin cos
Q
e
=
±
ϕϕ
ϕϕ
#
 j
¹ººä}ºº¯ÒÓÈ©º¯ÈϺmÒ¹¯ºº¯ÈϺm¯È°°äÈ¯ÒmÈË䩲¹È¯ºË}
°m«ÏÈÓ©°ººÓºËÓÒ«äÒ
xx xx yy
yy xx yy
21 21 21
21 21 21
∗∗
∗∗
−=
−= ±
()cos()sin
()sin()cos
,
ϕϕ
ϕϕ
#
Ò°¹ºãÏ«}ºº¯©ËÓȲºÒäº¯È°°º«ÓÒ«
L
äËÎº¯ÈÏÈäÒÒ
L

äËÎ¹¯ºº¯ÈÏÈäÒ¯ÈmÓ©iË®°mÒËãÓº
() ( ) ( )
(( )cos ( )sin ) (( )sin ( )cos )
( ) cos ( )( )cos sin ( ) sin
()sin ()()sincos(
Lxxyy
xx yy xx yy
xx xxyy yy
xx xxyy
∗∗
=− + =
=− + ±− =
=− + +
+− ± +
2
21
2
21
2
21 21
2
21 21
2
21
22
2121 21
22
21
22
2121
2
2
ϕϕ ϕϕ
ϕϕϕϕ
ϕϕϕ
#
#
yy
xx yy L
21
22
21
2
21
22
−=
=− + =
)cos
()() .
ϕ
°
jÏ°º²¯ÈÓËÓÒ«¹¯Òº¯ººÓÈãÓºä¹¯Ëº¯ÈϺmÈÓÒÒ¯È°°º«ÓÒ«äËÎã
º® ¹È¯º® ºË} °ãËË °º²¯ÈÓËÓÒË mËãÒÒÓ ãºm äËÎ ¹¯«ä©äÒ ÓÈ
¹ãº°}º°Ò¹º°}ºã}mªºä°ãÈË}ÈΩ®¯ËºãÓÒ}Ë¹Ë¯Ë²ºÒm
°ËË¯ÈmÓ©®
°
sº˰ãÒ¹¯Òº¯ººÓÈãÓºä¹¯Ëº¯ÈϺmÈÓÒÒ°º²¯ÈÓ«°«ãÒÓ©mË}º¯ºmÒ
mËãÒÒÓ©ãºmäËÎÓÒäÒºË°º²¯ÈÓ«°«Ò°}È㫯ӺË¹¯ºÒÏmËË
ÓÒË}Èκ®¹È¯©mË}º¯ºmÓÈ¹ãº°}º°Ò
˺¯ËäÈº}ÈÏÈÓÈ
j°¹ºãÏ« °mº®°mÈ º¯ººÓÈãÓ©² ¹¯Ëº¯ÈϺmÈÓÒ® äºÎÓº ¹º}ÈÏÈ º ã«
ÈÁÁÒÓÓ©²¹¯Ëº¯ÈϺmÈÓÒ®°¹¯ÈmËãÒmÈ°ãËÈ«mÈÎÓÈ«˺¯ËäÈ
˺¯ËäÈ

zÈκË ÈÁÁÒÓÓºË ¹¯Ëº¯ÈϺmÈÓÒË äºÎË ©¹¯Ë°ÈmãËÓº m Ë
¹¯ºÒÏmËËÓÒ« º¯ººÓÈãÓºº ¹¯Ëº¯ÈϺmÈÓÒ« Ò m² °ÎÈÒ® ¹º
mÏÈÒäÓºº¯ººÓÈãÓ©äÓȹ¯ÈmãËÓÒ«ä
iº}ÈÏÈËã°mº
°
 º ˺¯ËäË  ã« ãºº ÈÁÁÒÓÓºº ¹¯Ëº¯ÈϺmÈÓÒ« äºÎÓº m©¯È
º¯ºÓº¯äÒ¯ºmÈÓÓ °Ò°Ëä }ºº¯ÒÓÈ
{, , }0
12
′′
→→
ee
 }ºº¯È« ¹¯Ëº¯ÈÏË°«
cÈÏËã
¯Ëº­¯ÈϺmÈÓÒ«¹ãº°}º°ˆÒ



                 vºãȰӺˆËº¯ËäËäȈ¯ÒȺ¯ˆººÓÈã Óºº¹¯Ëº­¯ÈϺmÈÓÒ« Q mº¯ˆº
                                                                                                                     cosϕ     # sin ϕ
                 Óº¯äÒ¯ºmÈÓÓº® °Ò°ˆËäË }ºº¯ÒÓȈ ÒäËˈ mÒ                                        Q       =                      j
                                                                                                            e        sin ϕ    ± cosϕ
                 ¹ºˆºä‚}ºº¯ÒÓȈ©º­¯ÈϺmÒ¹¯ºº­¯ÈϺm¯È°°äȈ¯ÒmÈË䩲¹È¯ˆºË}­‚‚ˆ
                 °m«ÏÈÓ©°ººˆÓº ËÓÒ«äÒ
                 
                                                    x2∗ − x1∗ = ( x2 − x1 ) cosϕ # ( y2 − y1 ) sin ϕ
                                                    ∗       ∗
                                                                                                                    ,
                                                    y2 − y1 = ( x2 − x1 ) sin ϕ ± ( y2 − y1 ) cosϕ
                 
                 Ò°¹ºã ς«}ºˆº¯©ËÓȲºÒ䈺¯È°°ˆº«ÓÒ« L∗ äË΂º­¯ÈÏÈäÒÒ L 
                 äË΂¹¯ºº­¯ÈÏÈäÒ¯ÈmÓ©iË®°ˆm҈Ëã Óº
                 
                       ( L∗ ) 2 = ( x2∗ − x1∗ ) 2 + ( y2∗ − y1∗ ) 2 =
                               = ( ( x2 − x1 ) cosϕ # ( y2 − y1 ) sin ϕ ) 2 + ( ( x2 − x1 ) sin ϕ ± ( y2 − y1 ) cosϕ ) 2 =
                               = ( x2 − x1 ) 2 cos2 ϕ # 2( x2 − x1 )( y2 − y1 ) cosϕ sin ϕ + ( y2 − y1 ) 2 sin 2 ϕ +                        
                               + ( x2 − x1 ) sin ϕ ± 2( x2 − x1 )( y2 − y1 ) sin ϕ cosϕ + ( y2 − y1 ) cos ϕ =
                                               2      2                                                                  2     2


                               = ( x2 − x1 ) 2 + ( y2 − y1 ) 2 = L2          .
                   
              °jϰº²¯ÈÓËÓÒ«¹¯Òº¯ˆººÓÈã Ӻ乯˺­¯ÈϺmÈÓÒүȰ°ˆº«ÓÒ«äË΂ã 
                   ­º® ¹È¯º® ˆºË} °ãË‚ˈ °º²¯ÈÓËÓÒË mËãÒÒÓ ‚ãºm äË΂ ¹¯«ä©äÒ ÓÈ
                   ¹ãº°}º°ˆÒ¹º°}ºã }‚mªˆºä°ã‚ÈË}ÈΩ®ˆ¯Ë‚ºã ÓÒ}­‚ˈ¹Ë¯Ë²º҈ m
                   °Ë­Ë¯ÈmÓ©®
                   
              °sº˰ãÒ¹¯Òº¯ˆººÓÈã Ӻ乯˺­¯ÈϺmÈÓÒÒ°º²¯ÈÓ« ˆ°«ãÒÓ©mË}ˆº¯ºmÒ
                   mËãÒÒÓ©‚ãºmäË΂ÓÒäÒˆº­‚ˈ°º²¯ÈÓ«ˆ °«Ò°}È㫯Ӻ˹¯ºÒÏmËË
                   ÓÒË}Èκ®¹È¯©mË}ˆº¯ºmÓȹ㺰}º°ˆÒ
                   
          
     ‘˺¯ËäȺ}ÈÏÈÓÈ
          
          
          
          j°¹ºã ς« °mº®°ˆmÈ º¯ˆººÓÈã Ó©² ¹¯Ëº­¯ÈϺmÈÓÒ® äºÎÓº ¹º}ÈÏȈ  ˆº ã«
ÈÁÁÒÓÓ©²¹¯Ëº­¯ÈϺmÈÓÒ®°¹¯ÈmËãÒmȰãË‚ È«mÈÎÓÈ«ˆËº¯ËäÈ
          
          
 ‘˺¯ËäÈ          zÈÎºË ÈÁÁÒÓÓºË ¹¯Ëº­¯ÈϺmÈÓÒË äºÎˈ ­©ˆ  ¹¯Ë°ˆÈmãËÓº m mÒË
            ¹¯ºÒÏmËËÓÒ« º¯ˆººÓÈã Óºº ¹¯Ëº­¯ÈϺmÈÓÒ« Ò m‚² °ÎȈҮ ¹º
                   mÏÈÒäÓºº¯ˆººÓÈã Ó©äÓȹ¯ÈmãËÓÒ«ä
          
          
  iº}ÈÏȈËã°ˆmº
    
    
         ° º ˆËº¯ËäË  ã« ã ­ºº ÈÁÁÒÓÓºº ¹¯Ëº­¯ÈϺmÈÓÒ« äºÎÓº m©­¯Èˆ 
                                                                                              → →
                 º¯ˆºÓº¯äÒ¯ºmÈÓӂ  °Ò°ˆËä‚ }ºº¯ÒÓȈ {0, e1′ , e2′ }  }ºˆº¯È« ¹¯Ëº­¯Èςˈ°«