Аналитическая геометрия и линейная алгебра. Умнов А.Е. - 127 стр.

UptoLike

Составители: 

Рубрика: 

cÈÏËã

¯Ëº¯ÈϺmÈÓÒ«¹ãº°}º°Ò
ºÓ«ÒË¯¹¹©
|¹¯ËËãËÓÒË

lÓºÎ˰mº
G
ÓÈÏ©mÈË°«méywwvpwvvztv¡ntqírojljttvpvwnéj|qq
˰ãÒ ã©ä mä ˺ ªãËäËÓÈä
x
Ò
y
º°ÈmãËÓ m °ººmË°mÒË ¯ËÒ®
ªãËäËÓªººÎËäÓºÎ˰mÈÓÈÏ©mÈËä©®wévqoknlntqnuÒººÏÓÈÈË
ä©®
xy
Ò˰ãÒm©¹ºãÓ«°«°ãËÒË°ãºmÒ«
°
zxyyzx )()(
=
;
°°˰mËªãËäËÓ
H
È}º®ºã«ãºº
xexxeGx
== ;
°
ã«}Èκº
x
°˰mËªãËäËÓ
1
x
È}º®º
exx =
1

p°ãÒ }¯ºäË ºº
yxxy =
,,
∀∈
xy G
 º ¯¹¹È ÓÈÏ©mÈË°« rvuuyzjzqktvpÒãÒ
jinsnkvp
¯Òä˯

lºÎÓº¹¯Òm˰Ò°ãËÒË¹¯Òä˯©¯¹¹
 lÓºÎ˰mº mË˰mËÓÓ©² Ò°Ëã ºÓº°ÒËãÓº º¹Ë¯ÈÒÒ
°ãºÎËÓÒ«º¯ÈÏË¯¹¹Ë
e
Ò°ãº
0

 lÓºÎ˰mº ¹ºãºÎÒËãÓ©² mË˰mËÓÓ©² Ò°Ëã º¯ÈÏË
¯¹¹ºÓº°ÒËãÓºº¹Ë¯ÈÒÒäÓºÎËÓÒ«Ë
e
Ò°ãº
1

 lÓºÎ˰mº ¹ºmº¯ººm ¹ãº°}º°Ò mº}¯ ÁÒ}°Ò¯ºmÈÓÓº®
º}Òº¯ÈÏË¯¹¹ºÓº°ÒËãÓºº¹Ë¯ÈÒÒ}ºä¹ºÏÒÒÒ
 lÓºÎ˰mº ÈÁÁÒÓÓ©² ¹¯Ëº¯ÈϺmÈÓÒ® ¹ãº°}º°Ò º¯ÈÏË
¯¹¹ºÓº°ÒËãÓºº¹Ë¯ÈÒÒ}ºä¹ºÏÒÒÒ
cÈÏËã
¯Ëº­¯ÈϺmÈÓÒ«¹ãº°}º°ˆÒ



ºÓ«ˆÒ˯‚¹¹©
             
             
             
    |¹¯ËËãËÓÒË         lÓºÎ˰ˆmº GÓÈÏ©mÈˈ°«méywwvpwvvztv¡ntqírojljttvpvwnéj|qq
                  ˰ãÒ ã ­©ä m‚ä ˺ ªãËäËӈÈä x Ò y º°ˆÈmãËÓ m °ººˆmˈ°ˆmÒË ˆ¯ËˆÒ®
                         ªãËäËӈªˆººÎËäÓºÎ˰ˆmÈÓÈÏ©mÈËä©®wévqoknlntqnuÒº­ºÏÓÈÈË
                         ä©®xy Ò˰ãÒm©¹ºãÓ« ˆ°«°ãË‚ ÒË‚°ãºmÒ«
                               ° x ( yz ) = ( xy ) z ;
                                  °°‚Ë°ˆm‚ˈªãËäËӈHˆÈ}º®ˆºã«ã ­ºº x ∈ G                                       xe = ex = x ;
                                  °ã«}Èκºx°‚Ë°ˆm‚ˈªãËäËӈ x −1 ˆÈ}º®ˆº x −1 x = e 
         
         p°ãÒ }¯ºäË ˆºº xy = yx , ∀x , y ∈ G  ˆº ¯‚¹¹È ÓÈÏ©mÈˈ°« rvuuyzjzqktvp ÒãÒ
jinsnkvp
         
         
         
 ¯Òä˯        lºÎÓº¹¯Òm˰ˆÒ°ãË‚ Ò˹¯Òä˯©¯‚¹¹
          
                          lÓºÎ˰ˆmº m˝˰ˆmËÓÓ©² Ò°Ëã ºˆÓº°ÒˆËã Óº º¹Ë¯ÈÒÒ
                             °ãºÎËÓÒ«º­¯Èςˈ¯‚¹¹‚ËeÒ°ãº0
                        
                          lÓºÎ˰ˆmº ¹ºãºÎ҈Ëã Ó©² m˝˰ˆmËÓÓ©² Ò°Ëã º­¯Èςˈ
                             ¯‚¹¹‚ºˆÓº°ÒˆËã Óºº¹Ë¯ÈÒÒ‚äÓºÎËÓÒ«ËeÒ°ãº1
                        
                          lÓºÎ˰ˆmº ¹ºmº¯ºˆºm ¹ãº°}º°ˆÒ mº}¯‚ ÁÒ}°Ò¯ºmÈÓÓº®
                             ˆº}Òº­¯Èςˈ¯‚¹¹‚ºˆÓº°ÒˆËã Óºº¹Ë¯ÈÒÒ}ºä¹ºÏÒÒÒ
                        
                          lÓºÎ˰ˆmº ÈÁÁÒÓÓ©² ¹¯Ëº­¯ÈϺmÈÓÒ® ¹ãº°}º°ˆÒ º­¯Èςˈ
                             ¯‚¹¹‚ºˆÓº°ÒˆËã Óºº¹Ë¯ÈÒÒ}ºä¹ºÏÒÒÒ