Аналитическая геометрия и линейная алгебра. Умнов А.Е. - 129 стр.

UptoLike

Составители: 

Рубрика: 

cÈÏËã



vÒ°Ëä©ãÒÓˮө²¯ÈmÓËÓÒ®
n
n
n
nkkk
kkkk
kkkk
A
ααα
...)1(det
21
321
321
21
},...,,,{
),...,,,(
=
ï

Ë
{, , ,..., }
kkk k
n
123
m°ËmºÏäºÎÓ©Ë¯ÈÏãÒÓ©Ë ¹Ë¯Ë°ÈÓºm}Ò º¯È
ϺmÈÓÓ©ËÒÏÓºä˯ºm°ºãºmäÈ¯Ò©
A

º°}ºã}mÈÓÓºäº¹¯ËËãËÓÒÒ}ÈÏÈÓºº°ääÈ˯Ë°«¹ºm°ËämºÏäºÎ
Ó©ä¯ÈÏãÒÓ©ä¹Ë¯Ë°ÈÓºm}ÈäºÒ°ãº°ãÈÈË䩲¯ÈmÓº
Q

jÏ º¹¯ËËãËÓÒ«  È}ÎË m©Ë}ÈË º }ÈκË °ãÈÈËäºË °ºË¯ÎÒ m
˰mË °ºäÓºÎÒËã« ¹º ºÓºä ªãËäËÓ äÈ¯Ò© ÒÏ }Èκº °ºãÈ Ò }Èκ®
°¯º}Ò
ÈÈ

Íévknéqzxvkwjlntqnvwénlnsntq¹qvwénlnsntq¹lnznéuqtjtzvk
kzvévmvqzénznmvwvé¹lrjq
vmº®°mÈº¹¯ËËãÒËãË®
˺¯ËäÈ

¯Ò¯ÈÓ°¹ºÓÒ¯ºmÈÓÒÒäÈ¯Ò©ËËº¹¯ËËãÒËãÓËäËÓ«Ë°«
iº}ÈÏÈËã°mº
|Ò® °ãÈÈË人 m Áº¯äãË º¹¯ËËãÒËã« ¯ÈÓ°¹ºÓÒ¯ºmÈÓÓº® äÈ¯Ò©
%$=
T
Ë
n
n
nmmm
mmm
βββ
...)1(
21
21
21
),...,,
ï
 Óº Ò©mÈ« º
kmmk
kk
αβ
=
¹ºãÒä
=
},...,,{
21
),...,,(
T
21
21
21
...)1(det
n
n
n
mmm
nmmm
mmm
A
ααα
ï

¹º¯«ºÒä °ºäÓºÎÒËãÒ }Èκº °ãÈÈË人 ¹º Óºä˯Èä °¯º} º ˰
¹¯ÒmËËäÒ²}
n
n
nkkk
mmm
ααα
...)1(
21
21
21
),...,,
ï
Ë1,2,3,...,
n
Óºä˯È°¯º}
È
kkk k
n
123
, , ,...,
 Óºä˯È °ººmË°mÒ² °ºãºm |äËÒä ºmªºä
°ãÈËÒäËËä˰ººËmÒÓºË¯ÈmËÓ°mº
iik
i
m
= ;

¯Ò m©¹ºãÓËÓÓºä ÒÏäËÓËÓÒÒ ¹º¯« }È °ºäÓºÎÒËãË® ã« }Èκº °ãÈÈË人m
Áº¯äãËº¹¯ËËãÒËã«ËÒäËä˰º¯ÈmËÓ°mº
ïï( , ,..., ) ( , ,..., )
mm m kk k
nn
12 12
=

cÈÏËã
vÒ°ˆËä©ãÒÓˮө²‚¯ÈmÓËÓÒ®



                                                                                          
                                          det A =               ∑ (−1)            ï( k1 , k 2 , k 3 ,..., k n )
                                                                                                              α1k1 α 2 k 2 ...α nk n 
                                                      {k1 , k 2 , k 3 ,..., k n }
                       
                       Ë {k1 , k 2 , k 3 ,..., k n }   m°ËmºÏäºÎÓ©Ë ¯ÈÏãÒÓ©Ë ¹Ë¯Ë°ˆÈÓºm}Ò º­¯È
                       ϺmÈÓÓ©ËÒÏÓºä˯ºm°ˆºã­ºmäȈ¯Ò© A 
         
         
         º°}ºã }‚mÈÓӺ亹¯ËËãËÓÒÒ‚}ÈÏÈÓºˆº°‚ääȭ˯ˈ°«¹ºm°ËämºÏäºÎ
Ó©ä¯ÈÏãÒÓ©ä¹Ë¯Ë°ˆÈÓºm}È䈺Ұ㺰ãÈÈË䩲¯ÈmÓºQ
         
         jÏ º¹¯ËËãËÓÒ«  ˆÈ}ÎË m©ˆË}Èˈ ˆº }ÈÎºË °ãÈÈËäºË °º˯Î҈ m
}È˰ˆmË °ºäÓºÎ҈Ëã« ¹º ºÓºä‚ ªãËäËӈ‚ äȈ¯Ò© ÒÏ }Èκº °ˆºã­È Ò }Èκ®
°ˆ¯º}Ò
         
 ~ÈÈÈ        Íévknéqzxvkwjlntqnvwénlnsntq¹qvwénlnsntq¹lnznéuqtjtzvk
         kzvévmvqzénznmvwvé¹lrjq
         
         
         
         
vmº®°ˆmȺ¹¯ËËã҈ËãË®
             
             
             
    ‘˺¯ËäÈ          ¯Òˆ¯ÈÓ°¹ºÓÒ¯ºmÈÓÒÒäȈ¯Ò©Ë˺¹¯ËËã҈Ëã ÓËäËӫˈ°«
    
             
             
     iº}ÈÏȈËã°ˆmº
             
             
         |­Ò® mÒ °ãÈÈË人 m Áº¯ä‚ãË º¹¯ËËã҈Ëã« ˆ¯ÈÓ°¹ºÓÒ¯ºmÈÓÓº® äȈ¯Ò©
              % = $                        (−1) ï m1 , m2 ,..., mn ) β1m1 β 2m 2 ...β nmn 
                         T
                                ­‚ˈ                                                                                  Óº      ‚҈©mÈ«   ˆº


                                                                   ∑ (−1) ï(m , m ,..., m
                                                  T
             β k m k = α m k k ¹ºã‚Òä det A        =                                    1     2          n)    α m11α m 2 2 ...α m n n 
                                                          {m1 , m 2 ,..., m n }
         
         

         ¹º¯«ºÒä °ºäÓºÎ҈ËãÒ }Èκº °ãÈÈË人 ¹º Óºä˯Èä °ˆ¯º} ˆº ˰ˆ 
                                            ï m1 , m 2 ,..., m n )
         ¹¯ÒmËËäÒ²}mÒ‚ (−1)                                    α1k1 α 2k 2 ...α nk n Ë1,2,3,...,nÓºä˯Ȱˆ¯º}
         È k 1 , k 2 , k 3 ,..., k n   Óºä˯È °ººˆmˈ°ˆm‚ Ò² °ˆºã­ºm |ˆäˈÒä ˆº m ªˆºä
         °ã‚ÈËÒäËˈä˰ˆººËmÒӺ˯ÈmËÓ°ˆmº k m i = i ; ∀i 
         
         ¯Ò m©¹ºãÓËÓÓºä ÒÏäËÓËÓÒÒ ¹º¯«}È °ºäÓºÎ҈ËãË® ã« }Èκº °ãÈÈË人 m
         Áº¯ä‚ã˺¹¯ËËã҈Ëã«­‚ˈÒäˈ ä˰ˆº¯ÈmËÓ°ˆmº
         
                               ï (m1 , m2 ,..., mn ) = ï ( k1 , k 2 ,..., k n )