Аналитическая геометрия и линейная алгебра. Умнов А.Е. - 131 стр.

UptoLike

Составители: 

Рубрика: 

cÈÏËã



vÒ°Ëä©ãÒÓˮө²¯ÈmÓËÓÒ®
cȰ°äº¯Òä ¹Ë¯Ë°ÈÓºm} Ò°Ëã
{ , ,... , ,..., }kk kk k
ii n
12 1
+
 p°ãÒ m ÓË® ¹ºäËÓ«
ä˰ÈäÒ Ò°ãÈ
k
i
Ò
k
i+1
 º Ò°ãº ˰¹º¯«}ºm º¯ÈÏË䩲 Ò°ãÈäÒ
},...,,,...,{
2121 nii
kkkkk
+
º°ÈÓË°«¹¯ËÎÓÒäÈÏÈ°ËÒÏäËÓËÓÒ«¹º¯«}È°ã˺
mÈÓÒ«Ò°Ëã
i
k
Ò
1+i
k
ºËËÒ°ãº˰¹º¯«}ºmÒÏäËÓÒ°«ÓÈËÒÓÒ
wº ºÏÓÈÈË º ÏÓÈ} }Èκº °ãÈÈË人 m Áº¯äãË º¹¯ËËãÒËã« ÒÏäËÓÒ°«
ÓÈ¹¯ºÒmº¹ºãºÎÓ©®Ò°ã˺mÈËãÓºÒÏäËÓÒÏÓÈ}Òm˰º¹¯ËËãÒËã
sÈ}ºÓË˰ãÒ¯ËË°«¹ ºäËÓ«ä˰ÈäÒ°ºã©äËÎ }ºº¯©äÒÓȲºÒ°«
l
°ºãºmºã«ªºº ¹º¯ËË°«
l+l+1¹Ë¯Ë°ÈÓºmº} °º°ËÓÒ²°ºãºmÓº
¹º°}ºã}
()−=
+
11
21
l
ºÏÓÈ}º¹¯ËËãÒËã«ÒÏäËÓÒ°«ÓÈ¹¯ºÒmº¹ºãºÎÓ©®
˺¯ËäÈº}ÈÏÈÓÈ
vã˰mÒË

|¹¯ËËãÒËãäÈ¯Ò©°ºË¯ÎÈË® mÈºÒÓÈ}ºm©² °ºãÈ¯ÈmËÓ
Óã
iº}ÈÏÈËã°mº
¯Ò¹Ë¯Ë°ÈÓºm}ËºÒÓÈ}ºm©²°ºãºmÏÓÈËÓÒËº¹¯ËËãÒËã«°ºÓº®°º¯º
Ó© ÓË äËÓ«Ë°« Óº ° ¯º® °º¯ºÓ© ªº ÏÓÈËÓÒË ºãÎÓº ÒÏäËÓÒÏÓÈ}
ºªºäÈÓÓ©®º¹¯ËËãÒËãäºÎË¯ÈmÓ«°«ºã}ºÓã
vã˰mÒËº}ÈÏÈÓº
˺¯ËäÈ

ÒÓˮӺË
°mº®°mº
º¹¯ËËãÒËã«
p°ãÒ
k
©®°ºãËäÈ¯Ò©ÏÈÈmmÒËãÒÓˮӺ®}ºäÒÓÈÒÒÓË
}ºº¯©²Óºm©²°ºãºmºËËº¹¯ËËãÒËã¹¯Ë°ÈmÒämmÒËº®
ÎË ãÒÓˮӺ® }ºäÒÓÈÒÒ º¹¯ËËãÒËãË® äÈ¯Ò
k
äÒ °ºãÈäÒ
}ºº¯©²«mã«°«°ººmË°mÒËÓºm©Ë°ºã©ÒÏÈÓÓº®ãÒ
ÓˮӺ®}ºäÒÓÈÒÒ
iº}ÈÏÈËã°mº
°mäÈ¯ÒË
α
A
k
®°ºã˰º°ºÒÒÏªãËäËÓºm
ikikik
γ
µβλα
+=
Ë
i=1,2,...,n

|ËmÒÓ©¯ÈmËÓ°mÈ
.......)1(......)1(
...)(...)1(
......)1(
21
21
21
21
21
21
21
21
21
),...,,(
ï
21
),...,,(
ï
21
),...,,(
ï
21
),...,,(
ï
n
n
n
n
n
n
n
n
nkikkk
kkk
nkikkk
kkk
nkikikkk
kkk
nkikkk
kkk
α
γ
µαααβλαα
α
γ
µβλαα
αααα
+=
=+=
=
cÈÏËã
vÒ°ˆËä©ãÒÓˮө²‚¯ÈmÓËÓÒ®



           cȰ°äºˆ¯Òä ¹Ë¯Ë°ˆÈÓºm}‚ Ò°Ëã {k1 , k 2 ,... k i , k i +1 ,..., k n }  p°ãÒ m ÓË® ¹ºäËÓ«ˆ 
            ä˰ˆÈäÒ Ò°ãÈ ki Ò ki+1 ˆº Ұ㺠­Ë°¹º¯«}ºm º­¯ÈςË䩲 Ò°ãÈäÒ
            {k1 , k 2 ,...ki −1 , ki + 2 ,..., k n } º°ˆÈÓˈ°«¹¯ËÎÓÒäÈÏȰˈÒÏäËÓËÓÒ«¹º¯«}Ȱã˺
            mÈÓÒ«Ò°Ëã k i Ò ki +1 º­ËËҰ㺭˰¹º¯«}ºmÒÏäËÓ҈°«ÓÈËÒÓÒ‚
            
            wˆº ºÏÓÈÈˈ ˆº ÏÓÈ} }Èκº °ãÈÈË人 m Áº¯ä‚ãË º¹¯ËËã҈Ëã« ÒÏäËÓ҈°«
            Óȹ¯ºˆÒmº¹ºãºÎÓ©®Ò°ã˺mȈËã ÓºÒÏäËÓ҈ÏÓÈ}Òm˰ º¹¯ËËã҈Ëã 
            

            
            sÈ}ºÓË˰ãÒˆ¯Ë­‚ˈ°«¹ºäËÓ«ˆ ä˰ˆÈäÒ°ˆºã­©äË΂}ºˆº¯©äÒÓȲº҈°«
            l °ˆºã­ºm ˆº ã« ªˆºº ¹ºˆ¯Ë­‚ˈ°« l+l+1 ¹Ë¯Ë°ˆÈÓºmº} °º°ËÓÒ² °ˆºã­ºm Óº
            ¹º°}ºã }‚ ( −1) 2 l +1 = −1 ˆºÏÓÈ}º¹¯ËËã҈Ëã«ÒÏäËÓ҈°«Óȹ¯ºˆÒmº¹ºãºÎÓ©®
        
        
        ‘˺¯ËäȺ}ÈÏÈÓÈ
                
                
                
    vã˰ˆmÒË             |¹¯ËËã҈Ëã  äȈ¯Ò© °º˯Îȝˮ mÈ ºÒÓÈ}ºm©² °ˆºã­È ¯ÈmËÓ
                    ӂã 
              
     iº}ÈÏȈËã°ˆmº
       
            ¯Ò¹Ë¯Ë°ˆÈÓºm}˺ÒÓÈ}ºm©²°ˆºã­ºmÏÓÈËÓÒ˺¹¯ËËã҈Ëã«°ºÓº®°ˆº¯º
            Ó© ÓË äËӫˈ°« Óº ° ¯‚º® °ˆº¯ºÓ© ªˆº ÏÓÈËÓÒË ºãÎÓº ÒÏäËÓ҈  ÏÓÈ}
            ºªˆºä‚ÈÓÓ©®º¹¯ËËã҈Ëã äºÎˈ¯ÈmÓ«ˆ °«ˆºã }ºӂã 
      
       vã˰ˆmÒ˺}ÈÏÈÓº
              
              
              
    ‘˺¯ËäÈ         p°ãÒk©®°ˆºã­ËäȈ¯Ò©ÏÈȈ mmÒËãÒÓˮӺ®}ºä­ÒÓÈÒÒÓË
    
                      }ºˆº¯©²Óºm©²°ˆºã­ºmˆºË˺¹¯ËËã҈Ëã ¹¯Ë°ˆÈmÒämmÒˈº®
     ÒÓˮӺË
    °mº®°ˆmº         ÎË ãÒÓˮӺ® }ºä­ÒÓÈÒÒ º¹¯ËËã҈ËãË® äȈ¯Ò käÒ °ˆºã­ÈäÒ
    º¹¯ËËã҈Ëã«  }ºˆº¯©²«mã« ˆ°«°ººˆmˈ°ˆm‚ ÒËÓºm©Ë°ˆºã­©ÒÏÈÓÓº®ãÒ
                      ÓˮӺ®}ºä­ÒÓÈÒÒ
              
     iº}ÈÏȈËã°ˆmº
            
            ‚°ˆ mäȈ¯ÒË A α  k ®°ˆºã­Ë°º°ˆºÒˆÒϪãËäËӈºm α ik = λ β ik + µγ ik Ë
            i=1,2,...,n
            
            |ËmÒÓ©¯ÈmËÓ°ˆmÈ
            
                    (−1) ï (k1 , k 2 ,..., k n ) α1k 1α 2k 2 ...α ik ...α nk n =

                    = (−1) ï (k1 , k 2 ,..., k n ) α1k1α 2k 2 ...(λ β ik + µγ ik )...α nk n =                                                      

                    = (−1) ï (k1 , k 2 ,..., k n ) α1k1α 2k 2 ...λ β ik ...α nk n + (−1) ï (k1 , k 2 ,..., k n ) α1k1α 2k 2 ...µγ ik ...α nk n .