Аналитическая геометрия и линейная алгебра. Умнов А.Е. - 132 стр.

UptoLike

Составители: 

Рубрика: 


Ë} ÒÒ}ÈÁË ¯©m©° Ë®äÈËäÈÒ}Òlnj
ÙkÓÈãÒÒ˰}È«˺äË¯Ò«ÒãÒÓË®ÓÈ«ÈãË¯Èµ

äÓºmkp
jãÒ
γβα
µλ
AAA detdetdet
+=
Ë
k
©Ë°ºã©äÈ¯Ò
β
A
Ò
γ
A
°ººmË°mËÓÓº°º°º«ÒÏªãËäËÓºm
ik
β
Ò
ik
γ

i=1,2,...,n

˺¯ËäÈº}ÈÏÈÓÈ
vã˰mÒË

¯ÒÒ°ãËÓÒÒº¹¯ËËãÒËã«ÒÏ°ºãÈäÈ¯Ò©äºÎÓºm©Óº°Ò
ºÒ®äÓºÎÒËã
vã˰mÒË

p°ãÒ}ÓË}ºº¯ºä°ºãäÈ¯Ò©¹¯ÒÈmÒãÒÓË®Ó}ºäÒÓÈ
Òº°ÈãÓ©²ËË°ºãºmºº¹¯ËËãÒËãÓËÒÏäËÓÒ°«
iº}ÈÏÈËã°mº
iË®°mÒËãÓº º¹¯ËËãÒËã ¹ºãÒmÒ®°« m ¯ËÏãÈË ÈÓÓº® º¹Ë¯ÈÒÒ °
äÈ¯ÒË® äºÎÓº ¹º ˺¯ËäË  ¹¯Ë°ÈmÒ mmÒË ãÒÓˮӺ® }ºäÒÓÈÒÒ
Ò°²ºÓººº¹¯ËËãÒËã«ÒãÒÓˮӺ®}ºäÒÓÈÒÒº¹¯ËËãÒËãË®äÈ¯ÒÒäË
Ò²ºÒÓÈ}ºm©Ë°ºã©º°ãËÓÒË¯ÈmÓ©Óã¹º°ã˰mÒ
vã˰mÒËº}ÈÏÈÓº
˺¯ËäÈ

|¹¯ËËãÒË㹯ºÒÏmËËÓÒ«äÈ¯Ò¯ÈÏä˯È
n
[
n
¯ÈmËÓ ¹¯ºÒÏmËËÓÒ
Ò²º¹¯ËËãÒËãË®º˰
det ( ) det detAB A B=⋅

iº}ÈÏÈËã°mº
°
|ºÏÓÈÒä
CAB=
°äÈ¯Ò©
A

B
Ò
C
ÒäË°ºº
mË°mËÓÓº ªãËäËÓ©
ij
α

kl
β
Ò
pq
γ
 ºÈ ¹º º¹¯ËËãËÓÒ 
=
=
n
j
jqpjpq
1
βα
γ
Ò¹ººä
.
............
............
............
............
det
det
1121211212111
21212212211221221121
11112112111121121111
nnnnnnnnnnnnnnn
nnnnnnnn
nnnnnnnn
C
βαβαβαβαβαβαβα
βαβαβαβαβαβαβα
βαβαβαβαβαβαβα
+++++++
++++++
+++++++
=
=
ºãÒÓˮӺä°mº®°mº¹¯ËËãÒËã«˺¯ËäÈ
 Ë }  Ò Ò    } È Á Ë  ¯ ©   m © °  Ë ®   ä È ˆ Ë ä È ˆ Ò } Ò   l n ‘ j 
ÙkÓÈã҈Ò˰}È«˺äˈ¯Ò«ÒãÒÓË®ÓÈ«ÈãË­¯ÈµäÓºmkp



         jãÒ det A α = λ det A β + µ det A γ Ë k ©Ë°ˆºã­©äȈ¯Ò A β Ò A γ 

         °ººˆmˈ°ˆmËÓÓº°º°ˆº«ˆÒϪãËäËӈºm β ik Ò γ ik i=1,2,...,n
         
    ‘˺¯ËäȺ}ÈÏÈÓÈ
           
           
           
 vã˰ˆmÒË      ¯Òm©Ò°ãËÓÒÒº¹¯ËËã҈Ëã«Òϰˆºã­ÈäȈ¯Ò©äºÎÓºm©Óº°Òˆ 
          º­Ò®äÓºÎ҈Ëã 
           
           
 vã˰ˆmÒË      p°ãÒ}ÓË}ºˆº¯ºä‚°ˆºã­‚äȈ¯Ò©¹¯Ò­Èm҈ ãÒÓˮӂ }ºä­ÒÓÈ
          Ò º°ˆÈã Ó©²Ë˰ˆºã­ºmˆºº¹¯ËËã҈Ëã ÓËÒÏäËÓ҈°«
           
  iº}ÈÏȈËã°ˆmº
    
         iË®°ˆm҈Ëã Óº º¹¯ËËã҈Ëã  ¹ºã‚Òm Ò®°« m ¯Ëς㠈ȈË ÈÓÓº® º¹Ë¯ÈÒÒ °
         äȈ¯ÒË® äºÎÓº ¹º ˆËº¯ËäË   ¹¯Ë°ˆÈm҈  m mÒË ãÒÓˮӺ® }ºä­ÒÓÈÒÒ
         Ò°²ºÓººº¹¯ËËã҈Ëã«ÒãÒÓˮӺ®}ºä­ÒÓÈÒÒº¹¯ËËã҈ËãË®äȈ¯ÒÒäË 
         Ò²ºÒÓÈ}ºm©Ë°ˆºã­©º°ãËÓÒ˯ÈmÓ©ӂã ¹º°ã˰ˆmÒ 
   
    vã˰ˆmÒ˺}ÈÏÈÓº
           
           
           
 ‘˺¯ËäÈ        |¹¯ËËã҈Ëã ¹¯ºÒÏmËËÓÒ«äȈ¯Ò¯ÈÏä˯È n[n¯ÈmËÓ¹¯ºÒÏmËËÓÒ 
 
                 Ò²º¹¯ËËã҈ËãË®ˆº˰ˆ  det ( A B ) = det A ⋅ det B 
           
  iº}ÈÏȈËã°ˆmº
         
          °|­ºÏÓÈÒä C = A        B ‚°ˆ äȈ¯Ò© A  B Ò C ÒäË ˆ°ººˆ
                 mˈ°ˆmËÓÓº ªãËäËӈ© α ij  β kl  Ò γ pq  ‘ºÈ ¹º º¹¯ËËãËÓÒ  
                            n
                 γ pq = ∑α pj β jq Ò¹ºˆºä‚
                           j =1
          
               det C =
                     α11β11 + α12 β 21 + ... + α1n β n1 α11β12 + ... + α1n β n 2                        ... α11β1n + ... + α1n β nn
                    α β + α 22 β 21 + ... + α 2n β n1 α 21β12 + ...α 2 n β n 2                          ... α 21β1n + ... + α 2 n β nn 
               = det 21 11                                                                                                             .
                                     ...                             ...                                ...           ...
                    α n1β11 + α n 2 β 21 + ... + α nn β n1 α n1β12 + ... + α nn β n 2                   ... α n1β1n + ... + α nn β nn
                                                 
                                                 
                   ºãÒÓˮӺä‚°mº®°ˆm‚º¹¯ËËã҈Ëã« ˆËº¯ËäÈ