Аналитическая геометрия и линейная алгебра. Умнов А.Е. - 133 стр.

UptoLike

Составители: 

Рубрика: 

cÈÏËã



vÒ°Ëä©ãÒÓˮө²¯ÈmÓËÓÒ®
.det...
...
............
...
...
det...det
},...,,{
},...,,{
21
222
111
},...,,{
21
21
21
21
21
21
21
21
21
n
n
n
n
n
n
n
n
iii
iii
niii
ninini
iii
iii
iii
niii
A
C
=
==
β
β
β
ααα
ααα
ααα
β
β
β
º°}ºã} ¹Ë¯Ë°ÈÓºm}Ò
{, ,..., }ii i
n12
äº °ºË¯ÎÈºÒÓÈ}ºm©Ë Ò°ãÈ
º ºËË Ò°ãº °ãÈÈË䩲 m ¹ºãËÓÓº® °ääË ¯ÈmÓº
n
n
 Óº ÓËÓãËm©²
°¯ËÒªÒ²°ãÈÈË䩲m°Òã°ã˰mÒ«ºã}º
n
!

°~ÈäËÒä º ¹º°}ºã} äÈ¯Ò©
},...,,{
21 n
iii
A
°º°ÈmãËÓ© ÒÏ ˲ ÎË
°ºãºmº Ò
A
 ÓºÏȹҰÈÓÓ©²m¯ÈÏÓºä¹º¯«}ËºÒ²º¹¯ËËãÒËãÒ
äººãÒÈ°«m°Òã˺¯Ëä©ºã}ºÏÓÈ}ºä
¯Ëº¯ÈÏËä}ÈÎÒÏäÈ¯Ò
},...,,{
21 n
iii
A
¹Ë¯Ë°ÈmÒmËË°ºã©È}
º©¯È°¹ºãºÎÒ}ÈΩ®°ºãË°äËÓÒäÒÓË}°ºä¹Ë¯Ë°ºãÈäÒ
°ºãÒäÒ{ ÒºËªº®º¹Ë¯ÈÒÒ°ºã© ¹ºãÓº°¹º¯«ºËÓ©
ã« ˺ ¹º¯ËË°« Ò°ãº ¹Ë¯Ë°ÈÓºmº} °ºãºm ¯ÈmÓºË Ò°ã
˰¹º¯«}ºm m ¹Ë¯Ë°ÈÓºm}Ë
{ , ,..., }
LL L
Q
12
 Ò °ã˺mÈËãÓº ã« }Èκ®
äÈ¯Ò©
},...,,{
21
n
iii
A
Ë°¹¯ÈmËãÒmº°ººÓºËÓÒË
AA
n
n
iii
iii
det)1(det
),...,,(
ï
},...,,{
21
21
=

°º°Èmã««ªº°ººÓºËÓÒËmm©¯ÈÎËÓÒËã«
det
C
¹ºãÈËä
T
},...,,{
21
),...,,(
ï
detdet...)1(detdet
21
21
21
BAAC
n
n
n
iii
niii
iii
==
β
β
β

º¹º˺¯ËäËÒÈË
det ( ) det det
AB A B
=⋅

˺¯ËäÈº}ÈÏÈÓÈ
cÈÏËã
vÒ°ˆËä©ãÒÓˮө²‚¯ÈmÓËÓÒ®



                                                                       α1i1 α1i2                                               ... α1in
                                                                        α 2i1 α 2i2                                             ... α 2in
                             det C         = ∑ β i11β i2 2 ...β inn det                                                                         =
                                            {i1, i2 ,...,in }
                                                                         ...   ...                                              ...       ...
                                                                                                                                                    
                                                                        α ni1 α ni2                                             ... α nin

                                           =         ∑ β i 1β i 2 ...β i n det
                                                                1       2             n
                                                                                                     A∗
                                                                                                            {i1, i2 ,...,in }
                                                                                                                                      .
                                               {i1, i2 ,...,in }
                                                                                       
                                                                                       
                    º°}ºã }‚ ¹Ë¯Ë°ˆÈÓºm}Ò {i1 , i 2 ,..., i n }  亂ˆ °º˯ÎȈ  ºÒÓÈ}ºm©Ë Ò°ãÈ
                    ˆº º­ËË Ò°ãº °ãÈÈË䩲 m ¹ºã‚ËÓÓº® °‚ääË ¯ÈmÓº n n  Óº ÓËӂãËm©²
                    °¯ËÒªˆÒ²°ãÈÈË䩲m°Òã‚°ã˰ˆmÒ«ˆºã }ºn!
                    
                    
            °~ÈäˈÒä ˆº ¹º°}ºã }‚ äȈ¯Ò©                                                 A∗                              °º°ˆÈmãËÓ© ÒÏ ˆË² ÎË
                                                                                                            {i1 , i 2 ,..., i n }

                    °ˆºã­ºmˆºÒ A ÓºÏȹҰÈÓÓ©²m¯ÈÏӺ乺¯«}ˈºÒ²º¹¯ËËã҈ËãÒ
                    亂ˆºˆãÒȈ °«m°Òよ˺¯Ë䩈ºã }ºÏÓÈ}ºä
                    
                    
                    ¯Ëº­¯ÈςËä }È΂  ÒÏ äȈ¯Ò A∗                                                                     ¹Ë¯Ë°ˆÈmÒm ËË °ˆºã­© ˆÈ}
                                                                                                   {i1 , i 2 ,..., i n }
                    ˆº­©¯È°¹ºãºÎ҈ }ÈΩ®°ˆºã­Ë°äËÓ ÒäÒÓË}°ºä¹Ë¯Ë°ˆºã­ÈäÒ
                    °­ºã ÒäÒ{҈ºËªˆº®º¹Ë¯ÈÒÒ°ˆºã­©­‚‚ˆ¹ºãÓº°ˆ ‚¹º¯«ºËÓ©
                    㫠˺ ¹ºˆ¯Ë­‚ˈ°« Ұ㺠¹Ë¯Ë°ˆÈÓºmº} °ˆºã­ºm ¯ÈmÓºË Ò°ã‚
                    ­Ë°¹º¯«}ºm m ¹Ë¯Ë°ˆÈÓºm}Ë {L1 , L 2 ,..., L Q }  Ò °ã˺mȈËã Óº ã« }Èκ®
                    äȈ¯Ò© A∗                              ­‚ˈ°¹¯ÈmËãÒmº°ººˆÓº ËÓÒË
                                     {i1 , i 2 ,..., i n }
                    
                                                  det A∗                                    = (−1) ï (i1 ,i 2 ,...,i n ) det A 
                                                                    {i1 , i 2 ,..., i n }
                                                                                                 
                                                                                                 
            °º°ˆÈmã««ªˆº°ººˆÓº ËÓÒËmm©¯ÈÎËÓÒËã« det C ¹ºã‚ÈËä
             

                                                             ∑ (−1)ï (i ,i
                                                                                                                                                        T
                          det C = det A                                          1 2 ,..., i n )   β i11β i 2 2 ...β i n n = det A ⋅ det B                  
                                                    {i1 , i 2 ,..., i n }
                
                        ˆº¹ºˆËº¯ËäËÒÈˈ
                        
                                                              det ( A                 B ) = det A ⋅ det B 
        
        
        ‘˺¯ËäȺ}ÈÏÈÓÈ