Аналитическая геометрия и линейная алгебра. Умнов А.Е. - 134 стр.

UptoLike

Составители: 

Рубрика: 


Ë} ÒÒ}ÈÁË ¯©m©° Ë®äÈËäÈÒ}Òlnj
ÙkÓÈãÒÒ˰}È«˺äË¯Ò«ÒãÒÓË®ÓÈ«ÈãË¯Èµ

äÓºmkp
cÈÏãºÎËÓÒËº¹¯ËËãÒËãË®
{©˯Ëä m äÈ¯ÒË
A
°¯º}Ò ° Óºä˯ÈäÒ
ii i
k12
, ,...,
Ò°ºã© ° Óºä˯ÈäÒ
jj j
k12
, ,...,

|¹¯ËËãËÓÒË

iË˯äÒÓÈÓ}mÈ ¯ÈÓº®äÈ¯Ò©¹º¯«}È
k
º¯ÈϺmÈÓÓº®ªãËäËÓÈäÒ
°º«ÒäÒ ÓÈ ¹Ë¯Ë°ËËÓÒÒ °¯º}
ii i
k12
, ,...,
Ò°ºãºm
jj j
k12
, ,...,

ÓÈÏ©mÈË°«uqtvévu
k
mvwvé¹lrjÒººÏÓÈÈË°«
k
k
jjj
iii
M
,...,,
,...,,
21
21

|¹¯ËËãËÓÒË

iË˯äÒÓÈÓ }mȯÈÓº® äÈ¯Ò© ¹º¯«}È
kn
 º¯ÈϺmÈÓÓº®
ªãËäËÓÈäÒ º°ÈÒäÒ°« ¹º°ãË ˯}ÒmÈÓÒ« °¯º}
ii i
k12
, ,...,
Ò
°ºãºm
jj j
k12
, ,...,
 ÓÈÏ©mÈË°« uqtvévu lvwvstqznstu r uqtvéy
k
k
jjj
iii
M
,...,,
,...,,
21
21
ÒººÏÓÈÈË°«
M
ii i
jj j
k
k
12
12
, ,...,
,,...,

{©˯Ëä m äÈ¯ÒË
A
i
°¯º} Ò
j
® °ºãË ÓÈ ¹Ë¯Ë°ËËÓÒÒ }ºº¯©²
¯È°¹ºãºÎËÓ ªãËäËÓ
ij
α
 ÈãÒä ÒÏ
A
m©¯ÈÓÓ©Ë °¯º} Ò °ºãË ¯È°°äº¯Òä
}mȯÈÓäÈ¯Ò
A
+
¯ÈÏä˯È
)1()1(
×
nn

|¹¯ËËãËÓÒË

iË˯äÒÓÈÓäÈ¯Ò©
A
+
ÓÈÏ©mÈË°«lvwvstqznstuuqtvévu
M
i
j
ësnuntzj
ij
α

v¯¹¹Ò¯Ëämº¹¯ËËãËÓÒÒË˯äÒÓÈÓÈäÈ¯Ò©
A
m°Ë°ãÈÈËä©Ë
°ºË¯ÎÈÒË ªãËäËÓ
ij
α
 Ò m©Ó˰Ëä ˺ ÏÈ °}º}Ò ºãÒä m©¯ÈÎËÓÒË kqlj
...det
+=
ijij
DA
α

|¹¯ËËãËÓÒË

Ò°ãº
ij
D
ÓÈÏ©mÈË°«jsmniéjq·nxrqulvwvstntqnuªãËäËÓÈ
ij
α

~ÈäËÒäºm°Òãº¹¯ËËãËÓÒ«ÒäËä˰º¯ÈmËÓ°mÈ

],1[;det
1
niDA
n
j
ijij
==
=
α
Ò
],1[;det
1
njDA
n
k
kjkj
==
=
α

 Ë }  Ò Ò    } È Á Ë  ¯ ©   m © °  Ë ®   ä È ˆ Ë ä È ˆ Ò } Ò   l n ‘ j 
ÙkÓÈã҈Ò˰}È«˺äˈ¯Ò«ÒãÒÓË®ÓÈ«ÈãË­¯ÈµäÓºmkp



cÈÏãºÎËÓÒ˺¹¯ËËã҈ËãË®
            
            
            
            {©­Ë¯Ëä m äȈ¯ÒË A  °ˆ¯º}Ò ° Óºä˯ÈäÒ i1 , i 2 ,..., i k  Ò °ˆºã­© ° Óºä˯ÈäÒ
 j1 , j 2 ,..., j k 
            
            
 |¹¯ËËãËÓÒË            iˈ˯äÒÓÈӈ}mȯȈӺ®äȈ¯Ò©¹º¯«}Èkº­¯ÈϺmÈÓÓº®ªãËäËӈÈäÒ
 
                         °ˆº«ÒäÒ ÓÈ ¹Ë¯Ë°ËËÓÒÒ °ˆ¯º} i1 , i 2 ,..., i k  Ò °ˆºã­ºm j1 , j 2 ,..., j k 
                                                                                                               j , j ,..., j
                         ÓÈÏ©mÈˈ°«uqtvévukmvwvé¹lrjÒº­ºÏÓÈÈˈ°« M i 1, i ,...,
                                                                                  2
                                                                                        ik
                                                                                           k
                                                                                             
                                                                            1 2
            
            
 |¹¯ËËãËÓÒË            iˈ˯äÒÓÈӈ }mȯȈӺ® äȈ¯Ò© ¹º¯«}È n − k  º­¯ÈϺmÈÓÓº®
                  ªãËäËӈÈäÒ º°ˆÈ ÒäÒ°« ¹º°ãË m©˯}ÒmÈÓÒ« °ˆ¯º} i1 , i 2 ,..., i k  Ò
                         °ˆºã­ºm j1 , j 2 ,..., j k  ÓÈÏ©mÈˈ°« uqtvévu lvwvstqznst€u r uqtvéy
                                                                              j , j2 ,..., jk
                         M i j1, i, j,...,
                                     2 ,..., j k
                                                 Òº­ºÏÓÈÈˈ°« M i 1,i                     
                              1 2        k i                                  1 2 ,...,ik
            
            
            {©­Ë¯Ëä m äȈ¯ÒË A  i  °ˆ¯º}‚ Ò j® °ˆºã­Ë ÓÈ ¹Ë¯Ë°ËËÓÒÒ }ºˆº¯©²
¯È°¹ºãºÎËÓ ªãËäËӈ α ij  ÈãÒä ÒÏ                          A  m©­¯ÈÓÓ©Ë °ˆ¯º}‚ Ò °ˆºã­Ë ¯È°°äºˆ¯Òä
}mȯȈӂ äȈ¯Ò‚ A + ¯ÈÏä˯È ( n − 1) × ( n − 1) 
       
       
 

                         iˈ˯äÒÓÈӈäȈ¯Ò© A + ÓÈÏ©mÈˈ°«lvwvstqznst€uuqtvévu M i 
                                                                                                                                              j
 |¹¯ËËãËÓÒË
 
                         ësnuntzj α ij 
            
            
            


            v¯‚¹¹Ò¯‚Ëämº¹¯ËËãËÓÒÒˈ˯äÒÓÈӈÈäȈ¯Ò© A m°Ë°ãÈÈËä©Ë
°º˯ÎȝÒË ªãËäËӈ α ij  Ò m©Ó˰Ëä ˺ ÏÈ °}º­}Ò ºã‚Òä m©¯ÈÎËÓÒË kqlj
det A = α ij Dij + ... 
            
            
 |¹¯ËËãËÓÒË              Ұ㺠Dij ÓÈÏ©mÈˈ°«jsmniéjq·nxrqulvwvstntqnuªãËäËӈÈ α ij 
 
            
            
            ~ÈäˈÒ䈺m°Òズ¹¯ËËãËÓÒ«ÒäË ˆä˰ˆº¯ÈmËÓ°ˆmÈ
            
                                     n                                                           n
      det A =         ∑α ij Dij ; ∀i = [1, n] Ò det A = ∑α kj Dkj ; ∀j = [1, n]   
                                    j =1                                                        k =1