Аналитическая геометрия и линейная алгебра. Умнов А.Е. - 135 стр.

UptoLike

Составители: 

Рубрика: 

cÈÏËã



vÒ°Ëä©ãÒÓˮө²¯ÈmÓËÓÒ®
˺¯ËäÈ

v¹¯ÈmËãÒmº°ººÓºËÓÒË
j
i
ji
ij
MD
+
=
)1(
iº}ÈÏÈËã°mº
° ºº¹¯ËËãËÓÒË˯äÒÓÈÓÈ
......)1(det
},...,,1{
32
),...,,1(
2
32
2
11
+=
n
n
n
kk
nkkk
kk
A
αααα

º ˰
=
},...,{
32
),...,(
ï
2
32
2
11
...)1(
n
n
n
kk
nkkk
kk
D
ααα
 ¹º°}ºã} ºËmÒÓº º
),...,,(
ï
),...,,,1(
ï
3232
nn
kkkkkk
=
 Óº ºÈ m©¯ÈÎËÓÒË ã«
D
11
°ºm¹ÈÈË °
Áº¯ä㺮 º¹¯ËËãÒËã« äÈ¯Ò© ¹ºãÈË亮 ÒÏ
A
m©Ë¯}ÒmÈÓÒËä
¹Ë¯mºº°ºãÈÒ¹Ë¯mº®°¯º}Òvã˺mÈËãÓº
DM
11
1
1
=

°
 º°¯ºÒäÓºmäÈ¯Ò
A
¹Ë¯Ëä˰Òm ªãËäËÓ
ij
α
äÈ¯Ò©
A
mËË
ãËm©®m˯²ÓÒ®ºãã«˺¹Ë¯Ë°ÈmÒä
i
°¯º}ÓÈ¹Ë¯mºËä˰ºã«
˺ ¹º¯ËË°«
i

¹Ë¯Ë°ÈÓºmº} Ò ¹Ë¯Ë°ÈmÒä ÓÈ ¹Ë¯mºË ä˰º
j
®
°ºãËº¹º¯ËË
j
¹Ë¯Ë°ÈÓºmº}ºÈº¹¯ËËãÒËã¹Ë¯Ë°¯ºËÓ
Óº®äÈ¯Ò©
A
¯ÈmËÓ
det ( ) det ( ) det
=− =−
−+ +
AAA
ij ij
11
11

jÏÁº¯äã©°ãËËºÈÓÓºË°ººÓºËÓÒËËÈ}ÎËm©¹ºã
Ó«°«Òã«}ÈκºÒÏËË°ãÈÈË䩲 ¹ º°}ºã}ÈãË¯ÈÒ˰}ºËº¹ºãÓË
ÓÒË
ij
D
˰ }ºªÁÁÒÒËÓ ¹¯Ò
ij
α
m Áº¯äãË Ò°ãËÓÒ« º¹¯ËËãÒËã«
ºªºä°¹¯ÈmËãÒmº¯ÈmËÓ°mº
11
)1( DD
ji
ij
=
+

°
 v¯º®°º¯ºÓ©ºËmÒÓººÏÓÈËÓÒËäÒÓº¯ÈÓËÏÈmÒ°Òº¹ºãºÎË
ÓÒ«m©Ë¯}ÒmÈË人ªãËäËÓÈmäÈ¯ÒË
A
Ò¹ººä
MM
i
j
=
1
1

°
 Ò©mÈ« ¹ºãËÓÓ©Ë °ººÓºËÓÒ«
ij
ji
j
i
DDMM
+
=
=
=
)1(
11
1
1
 ¹¯Ò²ºÒä
}¯ÈmËÓ°m
DM
ij
ij
i
j
=−
+
()1

˺¯ËäÈº}ÈÏÈÓÈ
cÈÏËã
vÒ°ˆËä©ãÒÓˮө²‚¯ÈmÓËÓÒ®



                          v¹¯ÈmËãÒmº°ººˆÓºËÓÒË Dij = (−1) i + j M i 
                                                                                                                 j
    ‘˺¯ËäÈ
    
              
              
     iº}ÈÏȈËã°ˆmº
      
      
         ° ºº¹¯ËËãËÓÒ ˈ˯äÒÓÈӈÈ
         
            
                                     det A = α11                  ∑ (−1) (1, k         2 ,..., k n )   α 2 k 2 α 3k 3 ...α nk n + ... 
                                                            {1, k 2 ,..., k n }
                  
                      ˆº ˰ˆ  D11 =         ∑ (−1)ï (k             2 ,..., k n )   α 2k 2 α 3k 3 ...α nk n  ¹º°}ºã }‚ ºËmÒÓº ˆº
                                         {k 2 ,..., k n }
                      ï (1,k 2 , k 3 ,..., k n ) = ï (k 2 , k 3 ,..., k n )  Óº ˆºÈ m©¯ÈÎËÓÒË ã« D11  °ºm¹ÈÈˈ °
                      Áº¯ä‚㺮 º¹¯ËËã҈Ëã« äȈ¯Ò© ¹ºã‚ÈË亮 ÒÏ                                                          A  m©˯}ÒmÈÓÒËä
                                                                                                                                      1
                      ¹Ë¯mºº°ˆºã­Èҹ˯mº®°ˆ¯º}Òvã˺mȈËã Óº D11 = M 1 
          
          
          ° º°ˆ¯ºÒäÓºm‚ äȈ¯Ò‚ A ′ ¹Ë¯Ëä˰ˆÒmªãËäËӈ α ij äȈ¯Ò© A mËË
                      ãËm©®m˯²ÓÒ®‚ºãã«Ëº¹Ë¯Ë°ˆÈmÒä i °ˆ¯º}‚Óȹ˯mºËä˰ˆºã«
                      ˺ ¹ºˆ¯Ë­‚ˈ°« i ¹Ë¯Ë°ˆÈÓºmº} Ò ¹Ë¯Ë°ˆÈmÒä ÓÈ ¹Ë¯mºË ä˰ˆº j®
                      °ˆºã­Ëˆº¹ºˆ¯Ë­‚ˈj¹Ë¯Ë°ˆÈÓºmº}‘ºÈº¹¯ËËã҈Ë㠹˯˰ˆ¯ºËÓ
                      Óº®äȈ¯Ò© A ′ ¯ÈmËÓ
          
                                          det A ′ = ( −1) i −1+ j −1 det A = ( −1) i + j det A 
          
                      jÏÁº¯ä‚ã©  °ãË‚ˈˆºÈÓӺ˰ººˆÓº ËÓÒË­‚ˈˆÈ}ÎËm©¹ºã
                      Ó«ˆ °«Òã«}ÈκºÒÏË˰ãÈÈË䩲¹º°}ºã }‚ÈãË­¯ÈÒ˰}ºËº¹ºãÓË
                      ÓÒË Dij  ˰ˆ  }ºªÁÁÒÒËӈ ¹¯Ò α ij  m Áº¯ä‚ãË m©Ò°ãËÓÒ« º¹¯ËËã҈Ëã«
                      ºªˆºä‚°¹¯ÈmËãÒmº¯ÈmËÓ°ˆmº Dij = (−1) i + j D11
                                                                       ′ 
             
             
          ° v¯‚º®°ˆº¯ºÓ©ºËmÒÓºˆºÏÓÈËÓÒËäÒÓº¯ÈÓËÏÈmҰ҈ºˆ¹ºãºÎË
                                                                                                                                          j    1
                      ÓÒ«m©˯}ÒmÈË人ªãËäËӈÈmäȈ¯ÒË A ′ Ò¹ºˆºä‚ M i = M ′ 1 
          
                                                                 ′ = (−1) i + j Dij  ¹¯Ò²ºÒä
                                                                                                    j           1
          ° ҈©mÈ« ¹ºã‚ËÓÓ©Ë °ººˆÓº ËÓÒ« M i = M ′1 = D11

                      }¯ÈmËÓ°ˆm‚ Dij = ( −1) i + j M i 
                                                                       j

      
      
      ‘˺¯ËäȺ}ÈÏÈÓÈ