Аналитическая геометрия и линейная алгебра. Умнов А.Е. - 137 стр.

UptoLike

Составители: 

Рубрика: 

cÈÏËã



vÒ°Ëä©ãÒÓˮө²¯ÈmÓËÓÒ®
È}Òä º¯ÈϺä ¹º º¹¯ËËãËÓÒ 
EABBA ==
 Óº ºÈ °ºãȰӺ
º¹¯ËËãËÓÒÒãËääË
BA=
1

vã˰mÒËº}ÈÏÈÓº
|ºÏÓÈÒä
k
iiiI +++=
...
21
Ò
k
jjjJ +++=
...
21
ºÈº}ÈÏ©mÈË°«°¹¯ÈmËãÒ
mº®ººÈÈ«°ã˰mÒË
˺¯ËäÈ

ȹãȰÈ
iã«ÁÒ}°Ò¯ºmÈÓÓººÓÈº¯È°ºãºm
k
jjj
,...,,
21
ÒäËËä˰º¯ÈmËÓ
°mº
+
=
},...,,{
,...,,
,...,,
,...,,
,...,,
21
21
21
21
21
)1(det
k
k
k
k
k
iii
jjj
iii
jjj
iii
JI
MMA
|äËÒä º °ääÒ¯ºmÈÓÒË m©¹ºãÓ«Ë°« ¹º m°Ëä mºÏäºÎÓ©ä ¹Ë¯Ë°ÈÓºm}Èä
Óºä˯ºm°¯º}
ii i
k
12
, ,...,

ÈÈ

Æ·qxsqzvwénlnsqznsujzéq|
Q
mvwvé¹lrj
n
xaa a
axa a
aax a
aaa x
= det
...
...
...
... ... ... ... ...
...
ËÓÒË
°
 ~ÈäËÒäº°ääÈªãËäËÓºm}Èκº°ºãÈäÈ¯Ò©ºÒÓÈ}ºmÈ
Ò ¯ÈmÓÈ
xan+−
()1
 ºªºä ¹¯ÒÈmÒm } ¹Ë¯mº® °¯º}Ë °ää
º°ÈãÓ©²°¯º}Òm©Óº°«ºÒ®äÓºÎÒËãÒÏ¹Ë¯mº®°¯º}Òä©
¹ºãÒä äÈ¯Ò ° Ëä ÎË º¹¯ËËãÒËãËä °ä °ã˰mÒ«  Ò

n
xan
axa a
aax a
aaa x
=+
( ( )) det
...
...
...
... ... ... ... ...
...
1
111 1

° ÒÈ« ÒÏ }Èκ® °¯º}Ò ÓÈ ÒÓÈ« °º mº¯º® ¹Ë¯m °¯º}
äÓºÎËÓÓÓÈ
a
¹ºãÒä
cÈÏËã
vÒ°ˆËä©ãÒÓˮө²‚¯ÈmÓËÓÒ®



          ‘È}Òä º­¯ÈϺä ¹º º¹¯ËËãËÓÒ    A B = B A = E  Óº ˆºÈ °ºãȰӺ
                                                                                      −1
          º¹¯ËËãËÓÒ ÒãËääË B = A                                        
      
      vã˰ˆmÒ˺}ÈÏÈÓº
        
        
        
        |­ºÏÓÈÒä I = i1 + i2 + ... + ik Ò J = j1 + j2 + ... + jk ˆºÈº}ÈÏ©mÈˈ°«°¹¯ÈmËãÒ
mº®º­º­È È«°ã˰ˆmÒË
        
        
 ‘˺¯ËäÈ     iã«ÁÒ}°Ò¯ºmÈÓÓººÓÈ­º¯È°ˆºã­ºm j1 , j2 ,..., jk ÒäËˈä˰ˆº¯ÈmËÓ
    
                                              ∑                (−1) I + J M i 1, i
                                                                                                       j , j 2 ,..., j k
     ȹãÈ°È        °ˆmº det A =
                                                                               j , j 2 ,..., j k
                                                                                                   M i 1, i                
                                                                               1 2 ,..., i k           1 2 ,..., i k
                                       {i1 , i 2 ,..., i k }
         
         
         |ˆäˈÒä ˆº °‚ääÒ¯ºmÈÓÒË m©¹ºãӫˈ°« ¹º m°Ëä mºÏäºÎÓ©ä ¹Ë¯Ë°ˆÈÓºm}Èä
Óºä˯ºm°ˆ¯º} i1 , i 2 ,..., i k 
         
         
         
 ~ÈÈÈ       ƀ·qxsqzvwénlnsqznsujzéq|€Qmvwvé¹lrj
 
               
                                                                           x            a          a
                                                                                               ... a
                                                                          a             x          a
                                                                                               ... a
                                                                ∆ n = det a             a      ... a 
                                                                                                   x
                                                                          ...          ... ... ... ...
                                                                          a            a a ... x
           
    cËËÓÒË        ° ~ÈäˈÒ䈺°‚ääȪãËäËӈºm}Èκº°ˆºã­ÈäȈ¯Ò©ºÒÓÈ}ºmÈ
                           Ò ¯ÈmÓÈ x + a (n − 1)  ºªˆºä‚ ¹¯Ò­ÈmÒm } ¹Ë¯mº® °ˆ¯º}Ë °‚ää‚
                           º°ˆÈã Ó©²°ˆ¯º}Òm©Óº°«º­Ò®äÓºÎ҈Ëã ÒϹ˯mº®°ˆ¯º}Òä©
                           ¹ºã‚Òä äȈ¯Ò‚ ° ˆËä ÎË º¹¯ËËã҈ËãËä °ä °ã˰ˆmÒ«  Ò
                            
                                                                          1 1 1                                       ...  1
                                                                         a x a                                        ... a
                                            ∆ n = ( x + a (n − 1)) ⋅ det a a x                                        ... a 
                                                                         ... ... ...                                  ... ...
                                                                         a a a                                        ... x
                                                          
                     
                     ° {©҈ȫ ÒÏ }Èκ® °ˆ¯º}Ò ÓÈÒÓÈ« °º mˆº¯º® ¹Ë¯m‚  °ˆ¯º}‚
                           ‚äÓºÎËÓӂ ÓÈa¹ºã‚Òä