Аналитическая геометрия и линейная алгебра. Умнов А.Е. - 138 стр.

UptoLike

Составители: 

Рубрика: 


Ë} ÒÒ}ÈÁË ¯©m©° Ë®äÈËäÈÒ}Òlnj
ÙkÓÈãÒÒ˰}È«˺äË¯Ò«ÒãÒÓË®ÓÈ«ÈãË¯Èµ

äÓºmkp
n
xan
xa
xa
xa
=+ −⋅
( ( )) det
...
...
...
... ... ... ... ...
...
1
11 1 1
000
00 0
00 0

°
 º°ã˺mÈËãÓº¹¯ÒäËÓÒm
n
¯ÈÏ°ã˰mÒËã«¯ÈÏãºÎË
ÓÒ«º¹¯ËËãÒËã«¹º¹Ë¯mºä°ºã¹¯Ò²ºÒä}m©¯ÈÎËÓÒ
n
n
xan xa
=+
( ( ))( )1
1

¯ÈmÒãºz¯Èä˯È
cȰ°äº¯Òä°Ò°Ëä
n
ãÒÓˮө²¯ÈmÓËÓÒ®°
n
ÓËÒÏm˰Ó©äÒ

=+++
=+++
=+++
nnnnnn
nn
nn
β
ξ
α
ξ
α
ξ
α
β
ξ
α
ξ
α
ξ
α
β
ξ
α
ξ
α
ξ
α
...
.............................................
...
...
2211
22222121
11212111
ÒãÒ
],1[
;
1
nj
j
n
i
iji
=
=
=
β
ξ
α


jãÒ ÎË m äÈ¯ÒÓº® Áº¯äË
Ax b=
 Ë }mȯÈÓÈ« äÈ¯ÒÈ
A
ÒäËË
}ºä¹ºÓËÓ©
ji
α
È°ºã©
x
Ò
b
°ººmË°mËÓÓº}ºä¹ºÓËÓ©
i
ξ
Ò
j
β

|¹¯ËËãËÓÒË

¹º¯«ºËÓÓ©® ÓÈº¯ Ò°Ëã
},...,,{
21
n
ξ
ξ
ξ
Ëä ÓÈÏ©mÈ én¡ntqnu
xqxznusqtnpt}yéjktntqp˰ãÒ¹¯Ò¹º°ÈÓºm}ËªÒ²Ò°Ëãm°Ò°
Ëää©¹ºãÈËäºÎ˰mº
jäËËä˰º
˺¯ËäÈ

¯ÈmÒãº
z¯Èä˯È
p°ãÒ
∆= det A 0
 º °˰mË ËÒÓ°mËÓÓºË ¯ËËÓÒË °Ò°Ëä©
ãÒÓˮө²¯ÈmÓËÓÒ®º¹¯ËËã«ËäºËÁº¯äãÈäÒ
 Ë }  Ò Ò    } È Á Ë  ¯ ©   m © °  Ë ®   ä È ˆ Ë ä È ˆ Ò } Ò   l n ‘ j 
ÙkÓÈã҈Ò˰}È«˺äˈ¯Ò«ÒãÒÓË®ÓÈ«ÈãË­¯ÈµäÓºmkp



                                                                          1   1                     1       ...       1
                                                                          0 x−a                     0       ...       0
                                            ∆ n = ( x + a (n − 1)) ⋅ det 0    0                  x − a ...            0     
                                                                         ... ...                   ...      ... ...
                                                                                 0       0          0       ... x − a
                         
                         ° º°ã˺mȈËã Óº¹¯ÒäËÓÒmn¯Èϰã˰ˆmÒË㫯ÈÏãºÎË
                               ÓÒ«º¹¯ËËã҈Ë㫹º¹Ë¯mºä‚°ˆºã­‚¹¯Ò²ºÒä}m©¯ÈÎËÓÒ 
                                                              ∆ n = ( x + a (n − 1))( x − a ) n −1 
            
            
            
            
¯ÈmÒãºz¯Èä˯È
            
            
            
            cȰ°äºˆ¯Òä°Ò°ˆËä‚nãÒÓˮө²‚¯ÈmÓËÓÒ®°nÓËÒÏm˰ˆÓ©äÒ
            
                              α11ξ 1 + α12ξ 2 + ... + α1nξ n = β 1                                                          n
                             α ξ + α ξ + ... + α ξ = β
                              21 1
             
                                             22 2                2n n          2
                                                                                                 ÒãÒ           
                                                                                                                           ∑ α jiξ i = β j ; 
                                 .............................................                                              i =1
                             
                             α n1ξ 1 + α n 2 ξ 2 + ... + α nnξ n = β n                                                     j = [1, n]
                             
  
            
            
            jãÒ ÎË m äȈ¯ÒÓº® Áº¯äË A                            x = b  Ë }mȯȈÓÈ« äȈ¯ÒÈ A  ÒäËˈ
}ºä¹ºÓËӈ© α ji Ȱˆºã­© x Ò b °ººˆmˈ°ˆmËÓÓº}ºä¹ºÓËӈ© ξ i Ò β j 
         
         
         
 |¹¯ËËãËÓÒË  ¹º¯«ºËÓÓ©® ÓÈ­º¯ Ò°Ëã {ξ 1 , ξ 2 ,..., ξ n }  ­‚Ëä ÓÈÏ©mȈ  én¡ntqnu
 
               xqxznu€sqtnpt€}yéjktntqp˰ãÒ¹¯Ò¹º°ˆÈÓºm}˪ˆÒ²Ò°Ëãm°Ò°
               ˆËä‚䩹ºã‚ÈË䈺Î˰ˆmº
         
         
         jäËˈä˰ˆº
         
 ‘˺¯ËäÈ                p°ãÒ ∆ = det A ≠ 0  ˆº °‚Ë°ˆm‚ˈ ËÒÓ°ˆmËÓÓºË ¯ËËÓÒË °Ò°ˆËä©
 
                         ãÒÓˮө²‚¯ÈmÓËÓÒ®º¹¯ËËã«ËäºËÁº¯ä‚ãÈäÒ
  ¯ÈmÒãº
 z¯ÈäË¯È