Аналитическая геометрия и линейная алгебра. Умнов А.Е. - 140 стр.

UptoLike

Составители: 

Рубрика: 


Ë} ÒÒ}ÈÁË ¯©m©° Ë®äÈËäÈÒ}Òlnj
ÙkÓÈãÒÒ˰}È«˺äË¯Ò«ÒãÒÓË®ÓÈ«ÈãË¯Èµ

äÓºmkp
° iº}ÈÎËä ˹˯ º m °ãºmÒ«² ˺¯Ëä© °ºmº}¹Óº° Ò°Ëã
],1[, nk
k
k
=
=
ξ
˰¯ËËÓÒËÈÓÓº®°Ò°Ëä©ãÒÓˮө²¯ÈmÓËÓÒ®¯Ë
º¯ÈÏËäãËm©ËȰÒÒ°²ºÓº®°Ò°Ëä©ãÒÓˮө²¯ÈmÓËÓÒ®
].,1[,
1
)(
1
)(
1
1
11111
nj
DD
jkj
n
k
k
n
k
n
i
kijik
n
i
n
k
kikji
n
i
i
ji
==
=
=
=
=
∑∑∑∑
=
=====
βδβ
αββαα
iã«¹ºãËÓÒ«¹º°ãËÓ˺¯ÈmËÓ°mÈä© °ÓºmÈÒÏäËÓÒãÒ¹º¯«º} °ääÒ¯º
mÈÓÒ«Òmº°¹ºãϺmÈãÒ°˺¯Ë亮
˺¯ËäÈº}ÈÏÈÓÈ

cÈÓäÈ¯Ò©
cȰ°äº¯Òä äÈ¯Ò
A
¯ÈÏä˯È
nm
×
°
},min{1 nmk
 {©˯Ëä
k
ÁÒ}°Ò¯ºmÈÓÓ©²°ºãºmÒ°¯º}ÓÈ¹Ë¯Ë°ËËÓÒÒ}ºº¯©²°ºÒäÈ¯ÒÈäÒÓº¯È¹º
¯«}È
k

°¹¯ÒÈÓÓºä
k
m°ËäÒÓº¯©
k
º¹º¯«}È¯ÈmÓ©ÓãºÈ¯ÈmÓ©
ÓãÒm°ËäÒÓº¯©¹º¯«}ÈËËä
k
¹º°}ºã}}ÈΩ®äÒÓº¯
()k + 1
º¹º¯«}È
¹¯Ë°ÈmÒämmÒËãÒÓˮӺ®}ºäÒÓÈÒÒäÒÓº¯ºm¹º¯«}È
k
vä°ã˰mÒË
|¹¯ËËãËÓÒË

sÈÒm©°Ò® ÒÏ ¹º¯«}ºm ºãÒÓ©² º Óã« äÒÓº¯ºm äÈ¯Ò©
A

ÓÈÏ©mÈË°«éjtmvuäÈ¯Ò©ÒººÏÓÈÈË°«
rg A

|¹¯ËËãËÓÒË

º® ÓËÓãËmº® äÒÓº¯ äÈ¯Ò© ¹º¯«º} }ºº¯ºº ¯ÈmËÓ ËË ¯ÈÓ
ÓÈÏ©mÈË°«ijoqxtuuqtvévu
|¹¯ËËãËÓÒË

vºã© °¯º}Ò äÈ¯Ò© m²º«ÒË m äÈ¯Ò ÈÏÒ°Óºº äÒÓº¯È
ÓÈÏ©mÈ°«ijoqxtuq
 Ë }  Ò Ò    } È Á Ë  ¯ ©   m © °  Ë ®   ä È ˆ Ë ä È ˆ Ò } Ò   l n ‘ j 
ÙkÓÈã҈Ò˰}È«˺äˈ¯Ò«ÒãÒÓË®ÓÈ«ÈãË­¯ÈµäÓºmkp



         ° iº}ÈÎËä ˆË¹Ë¯  ˆº m ‚°ãºmÒ«² ˆËº¯Ëä© °ºmº}‚¹Óº°ˆ  Ò°Ëã
                         ∆k
                 ξk =       , k = [1, n] ˰ˆ ¯Ë ËÓÒËÈÓÓº®°Ò°ˆËä©ãÒÓˮө²‚¯ÈmÓËÓÒ®¯Ë
                         ∆
                 º­¯ÈςËäãËm©ËȰˆÒÒ°²ºÓº®°Ò°ˆËä©ãÒÓˮө²‚¯ÈmÓËÓÒ®  
                 
                                         n
                                                 ∆i 1 n      n
                                                                          1 n       n
                                        ∑α ji      = ∑α ji ( ∑ β k Dki ) = ∑ β k (∑α ji Dki ) =
                                                 ∆ ∆ i =1                 ∆ k =1
                                        i =1                k =1                  i =1
                                                                                                                         
                                         1 n
                                        = ∑ β k δ kj ∆= β j ,              j = [1, n].
                                         ∆ k =1
                 
                 i㫹ºã‚ËÓÒ«¹º°ãËÓ˺¯ÈmËÓ°ˆmÈä©°ÓºmÈÒÏäËÓÒãÒ¹º¯«º}°‚ääÒ¯º
                 mÈÓÒ«Òmº°¹ºã ϺmÈãÒ° ˆËº¯Ë亮
     
     
     ‘˺¯ËäȺ}ÈÏÈÓÈ
            
            
            
            
cÈÓäȈ¯Ò©
            
            
            
        cȰ°äºˆ¯Òä äȈ¯Ò‚ A  ¯ÈÏä˯È m× n  ‚°ˆ  1 ≤ k ≤ min{m, n}  {©­Ë¯Ëä k
ÁÒ}°Ò¯ºmÈÓÓ©²°ˆºã­ºmÒ°ˆ¯º}Óȹ˯˰ËËÓÒÒ}ºˆº¯©²°ˆºÒˆäȈ¯ÒÈäÒÓº¯È¹º
¯«}Èk
        
        
        ‚°ˆ  ¹¯Ò ÈÓÓºä k m°Ë äÒÓº¯© kº ¹º¯«}È ¯ÈmÓ© ӂã ˆºÈ­‚‚ˆ¯ÈmÓ©
ӂã Òm°ËäÒÓº¯©¹º¯«}Èm© ËËä k¹º°}ºã }‚}ÈΩ®äÒÓº¯ ( k + 1) º¹º¯«}È
¹¯Ë°ˆÈmÒämmÒËãÒÓˮӺ®}ºä­ÒÓÈÒÒäÒÓº¯ºm¹º¯«}Èk vä°ã˰ˆmÒË 
       
       
       
 
 |¹¯ËËãËÓÒË            sÈÒm©° Ò® ÒÏ ¹º¯«}ºm ºˆãÒÓ©² ºˆ ӂã« äÒÓº¯ºm äȈ¯Ò©                                                  A 
 
                         ÓÈÏ©mÈˈ°«éjtmvuäȈ¯Ò©Òº­ºÏÓÈÈˈ°« rg A 
            
            
 |¹¯ËËãËÓÒË             ­º® ÓËӂãËmº® äÒÓº¯ äȈ¯Ò© ¹º¯«º} }ºˆº¯ºº ¯ÈmËÓ ËË ¯ÈÓ‚
                  ÓÈÏ©mÈˈ°«ijoqxt€uuqtvévu
            
            
 |¹¯ËËãËÓÒË            vˆºã­© °ˆ¯º}Ò  äȈ¯Ò© m²º«ÒË m äȈ¯Ò‚ ­ÈÏÒ°Óºº äÒÓº¯È
                  ÓÈÏ©mÈ ˆ°«ijoqxt€uq