Аналитическая геометрия и линейная алгебра. Умнов А.Е. - 141 стр.

UptoLike

Составители: 

Рубрика: 

cÈÏËã



vÒ°Ëä©ãÒÓˮө²¯ÈmÓËÓÒ®
cȰ°äº¯Òä
n m
}ºä¹ºÓËÓÓ©²°ºãºmmÒÈ
mn
n
n
n
mm
aaa
α
α
α
α
α
α
α
α
α
...
;...;
...
;
...
2
1
2
22
12
2
1
21
11
1
===
Ò°ºã©
0
...
0
0
;
...
2
1
==
ob
m
β
β
β

º°}ºã} ã« °ºãºm }È} ȰÓºº °ãÈ« äÈ¯Ò º¹¯ËËãËÓ© º¹Ë¯ÈÒÒ
°ãºÎËÓÒ« Ò äÓºÎËÓÒ« ÓÈ Ò°ãº º äºÎÓº ºmº¯Ò º °ºãË
b
˰ sqtnptj¹
rvuiqtj|q¹°ºãºm
aa a
n
12
, ,...,
 ˰ãÒ °˰m Ò°ãÈ
n
λλλ
.,,..,
21
È}ÒË
º
=
=
n
i
ii
ab
1
λ

˺¯ËäÈ

|ÈÏÒ°Óºä
äÒÓº¯Ë
{°«}Ò®°ºãË°¯º}ÈäÈ¯Ò©˰ ãÒÓË®ÓÈ«}ºäÒÓÈÒ«ÈÏÒ°
Ó©²°ºãºm°¯º}ªº®äÈ¯Ò©
iº}ÈÏÈËã°mº
° °¯ÈÓäÈ¯Ò©¯ÈmËÓ
r
rËÏº¯ÈÓÒËÓÒ«ºÓº°ÒäºÎÓº°ÒÈº
äÈ¯ÒÈÈÏÒ°ÓººäÒÓº¯È¯È°¹ºãºÎËÓÈmãËmºäm˯²ÓËäãäÈ¯Ò©
A

|}È®äÒä äÈ¯Ò ÈÏÒ°Óºº äÒÓº¯È
i
® °¯º}º® Ò
j
ä °ºãºä Ò
¯È°°äº¯Òäº¹¯ËËãÒËã
ijiri
rjrrr
jr
ααα
ααα
ααα
...
...
............
...
det
1
1
1111
=

}ºº¯©®¯ÈmËÓÓã
iË®°mÒËãÓº˰ãÒ
0
≤≤
ir

0
≤≤
jr
ºÒäËËäº ¹¯ËËãÒËã°ºÒÓÈ}º
m©äÒ°ºãÈäÒ°¯º}ÈäÒp°ãÒÎË
ULP<≤

rjm
<≤
º
∆=0
m°Òã
º¹¯ËËãËÓÒ«¯ÈÓÈäÈ¯Ò©}È}äÒÓº¯¹º¯«}È
r+1

°
 cÈÏãºÎÒäº¹¯ËËãÒËã
¹º¹º°ãËÓË®°¯º}Ë¹ºãÒä
0...
2211
=++++
MDDD
ijririi
αααα

cÈÏËã
vÒ°ˆËä©ãÒÓˮө²‚¯ÈmÓËÓÒ®



            cȰ°äºˆ¯Òän m}ºä¹ºÓËӈө²°ˆºã­ºmmÒÈ
            
            
                 α11       α12             α1n                 β1      0
                α         α               α                    β       0
            a1 = 21 ; a2 = 22 ; ... ; an = 2 n Ò°ˆºã­© b = 2 ; o =     
                  ...       ...             ...                ...     ...
                α m1      α m2            α mn                 βm      0
            
            
            º°}ºã }‚ ã« °ˆºã­ºm }È} ȰˆÓºº °ã‚È« äȈ¯Ò  º¹¯ËËãËÓ© º¹Ë¯ÈÒÒ
°ãºÎËÓÒ« Ò ‚äÓºÎËÓÒ« ÓÈ Ò°ãº ˆº äºÎÓº ºmº¯Òˆ  ˆº °ˆºã­Ë b                             ˰ˆ  sqtnptj¹
rvuiqtj|q¹ °ˆºã­ºm            a1 , a 2 , ... , a n       ˰ãÒ °‚Ë°ˆm‚ ˆ Ò°ãÈ λ 1, λ 2 ,..., λ n  ˆÈ}ÒË
                    n
ˆº b =        ∑λ i    ai 
                i =1
            
            
    ‘˺¯ËäÈ           {°«}Ò® °ˆºã­Ë °ˆ¯º}È äȈ¯Ò©˰ˆ ãÒÓË®ÓÈ«}ºä­ÒÓÈÒ«­ÈÏÒ°
                 Ó©²°ˆºã­ºm °ˆ¯º} ªˆº®äȈ¯Ò©
     |­ÈÏÒ°Óºä
    äÒÓº¯Ë 
           
     iº}ÈÏȈËã°ˆmº
      
      
        ° ‚°ˆ ¯ÈÓäȈ¯Ò©¯ÈmËÓ rrËϺ¯ÈÓÒËÓÒ«º­Óº°ˆÒäºÎÓº°҈Ȉ ˆº
                äȈ¯ÒÈ­ÈÏÒ°ÓººäÒÓº¯È¯È°¹ºãºÎËÓÈmãËmºäm˯²ÓËä‚ã‚äȈ¯Ò© A 
        
                |}È®äÒä äȈ¯Ò‚ ­ÈÏÒ°Óºº äÒÓº¯È i® °ˆ¯º}º® Ò jä °ˆºã­ºä Ò
                ¯È°°äºˆ¯Ò亹¯ËËã҈Ëã 
                
                                                         α11      ... α1r     α1 j
                                                          ...     ... ...      ...
                                                 ∆ = det                           
                                                         α r1     ... α rr    α rj
                                                         α i1     ... α ir    α ij
                
                }ºˆº¯©®¯ÈmËÓӂã 
        
                iË®°ˆm҈Ëã Óº˰ãÒ 0 ≤ i ≤ r  0 ≤ j ≤ r ˆºÒäËË亹¯ËËã҈Ëã °ºÒÓÈ}º
                m©äÒ°ˆºã­ÈäÒ °ˆ¯º}ÈäÒ p°ãÒÎË U < L ≤ P  r < j ≤ m ˆº ∆ = 0 m°Òã‚
                º¹¯ËËãËÓÒ«¯ÈÓÈäȈ¯Ò©}È}äÒÓº¯¹º¯«}Èr+1
        
        

        ° cÈÏãºÎÒ亹¯ËËã҈Ëã ∆¹º¹º°ãËÓË®°ˆ¯º}˹ºã‚Òä
                
                                           α i1D1 +α i 2 D2 +... + α ir Dr +α ij M = 0