Аналитическая геометрия и линейная алгебра. Умнов А.Е. - 139 стр.

UptoLike

Составители: 

Рубрика: 

cÈÏËã



vÒ°Ëä©ãÒÓˮө²¯ÈmÓËÓÒ®
ni
i
i
,...,2,1;
=
=
ξ
Ë
 $
......
..................
......
......
det
21
222221
111211
=
i
nnnnn
n
n
i
αβαα
αβαα
αβαα

º¹¯ËËãÒËãäÈ¯Ò©¹ºãÈË亮 ÒÏ äÈ¯Ò© °Ò°Ëä©¯ÈmÓË
ÓÒ®
A
ÏÈäËÓº®ËË
i
º°ºãÈÓÈ°ºãË°mººÓ©²ãËÓºm
b
iº}ÈÏÈËã°mº
°
 ºãÒä mÓÈÈãË m˯ÎËÓÒË˺¯Ëä©m¹¯Ë¹ºãºÎËÓÒÒ º °Ò°ËäÈ
ÒäËË¯ËËÓÒË
n
x
ξ
ξ
ξ
...
2
1
=
º˰}ºÈm©¹ºãÓ«°«¯ÈmËÓ°mÈ
],1[;
1
nj
j
n
i
iji
==
=
β
ξ
α

äÓºÎÒm ºË ȰÒ ªÒ² ¯ÈmËÓ°m ÓÈ ÈãË¯ÈÒ˰}ºË º¹ºãÓËÓÒË
D
jk
Ò
¹¯º°ääÒ¯ºmÈm¹º
j
¹ºãÒä
jk
n
i
n
j
jiji
n
j
jk
DD
∑∑
===
=
111
)(
β
ξ
α

jÏäËÓÒä ¹º¯«º} °ääÒ¯ºmÈÓÒ« º ˰ m©¹ºãÓÒä ¹Ë¯Ë¯¹¹Ò¯ºm} °ãÈ
ÈË䩲mãËmº®ȰÒªºº¯ÈmËÓ°mÈ
jk
n
j
n
j
jijkji
n
i
DD
∑∑
===
=
111
)(
β
ξ
α

sºm©¯ÈÎËÓÒËm }¯㩲 °}º}Ȳ ¯ÈmÓº
∆⋅
δ
ik
¹º˺¯ËäË  ¹ºªºä
Ò©mÈ«º
=
=
n
j
kjkj
D
1
β
Ò
=
=
n
i
kiik
1
ξ
ξ
δ
¹ºãÈËä
],1[, nk
kk
==
ξ

jãÒº}ºÓÈËãÓº
],1[, nk
k
k
=
=
ξ

cÈÏËã
vÒ°ˆËä©ãÒÓˮө²‚¯ÈmÓËÓÒ®





                                                                      α11 α12          ... β1      ... α1n
                             ∆                                        α    α 22        ... β 2     ... α 2 n
                        ξ i = i ; i = 1,2,..., n Ë ∆ i = det 21                                             
                              ∆                                        ...  ...        ... ...     ... ...
                                                                      α n1 α n 2       ... β n     ... α nn
                                                                                            ↑
                                                                                             i −   $
                                                        
                       º¹¯ËËã҈Ëã  äȈ¯Ò© ¹ºã‚ÈË亮 ÒÏ äȈ¯Ò© °Ò°ˆËä© ‚¯ÈmÓË
                      ÓÒ® A ÏÈäËÓº®ËËiº°ˆºã­ÈÓȰˆºã­Ë°mº­ºÓ©²ãËÓºm b 
             
             
     iº}ÈÏȈËã°ˆmº
      
         ° ºã‚Òä mÓÈÈãË ‚ˆm˯ÎËÓÒË ˆËº¯Ëä© m ¹¯Ë¹ºãºÎËÓÒÒ ˆº °Ò°ˆËäÈ
                                            ξ1
                                            ξ2
                  ÒäËˈ¯Ë ËÓÒË x =     ˆº˰ˆ }ºÈm©¹ºãÓ« ˆ°«¯ÈmËÓ°ˆmÈ
                                            ...
                                            ξn
                                                   n
                                                  ∑α jiξ i = β j ; j = [1, n] 
                                                  i =1
         
                 äÓºÎÒm º­Ë ȰˆÒ ªˆÒ² ¯ÈmËÓ°ˆm ÓÈ ÈãË­¯ÈÒ˰}ºË º¹ºãÓËÓÒË D jk  Ò
                 ¹¯º°‚ääÒ¯ºmÈm¹ºj ¹ºã‚Òä
                 
                                                  n           n           n
                                                 ∑ D jk (∑α jiξ i ) = ∑ β j D jk 
                                                 j =1        i =1         j =1
                 
                 jÏäËÓÒä ¹º¯«º} °‚ääÒ¯ºmÈÓÒ« ˆº ˰ˆ  m©¹ºãÓÒä ¹Ë¯Ë¯‚¹¹Ò¯ºm}‚ °ãÈ
                 ÈË䩲 mãËmº®ȰˆÒªˆºº¯ÈmËÓ°ˆmÈ
                 
                                                  n      n                n
                                                 ∑ ( ∑α ji D jk )ξ i = ∑ β j D jk 
                                                 i =1 j =1                j =1
                                                      
                sº m©¯ÈÎËÓÒË m }¯‚㩲 °}º­}Ȳ ¯ÈmÓº ∆ ⋅δik  ¹º ˆËº¯ËäË   ¹ºªˆºä‚
                                    n                             n
                 ‚҈©mÈ«ˆº   ∑ β j D jk = ∆ k Ò ∆∑ δ ik ξ i = ξ k ∆ ¹ºã‚ÈËä ξ k ∆ = ∆ k , k = [1, n] 
                                   j =1                       i =1
                 
                                                ∆k
                 jãÒº}ºÓȈËã Óº ξ k =         , k = [1, n] 
                                                ∆