Аналитическая геометрия и линейная алгебра. Умнов А.Е. - 126 стр.

UptoLike

Составители: 

Рубрика: 


Ë} ÒÒ}ÈÁË ¯©m©° Ë®äÈËäÈÒ}Òlnj
ÙkÓÈãÒÒ˰}È«˺äË¯Ò«ÒãÒÓË®ÓÈ«ÈãË¯Èµ
äÓºmkp
ÈÓÓ©ä ÈÁÁÒÓÓ©ä ¹¯Ëº¯ÈϺmÈÓÒËä m ¯ º¯ººÓÈãÓ
{, , }0
12
ee
→→
m
ºËä°ãÈËÓËº¯ºÓº¯äÒ¯ºmÈÓÓ
˯ˮËä}°Ò°ËäË}ºº¯ÒÓÈ
{, , }0
12
′′ ′′
→→
ee
Óº¯äÒ¯ºmÈmmË}º¯©
e
1
Ò
e
2
¹º
Áº¯äãÈä
′′
=
′′
== =
→→
e
e
e
e
ee
1
1
1
2
2
2
11 2 2
κκ
κκ
;; ;

° Ë}º Ë º ¹¯Ëº¯ÈϺmÈÓÒË ¹Ë¯Ëmº«ËË º¯ºÓº¯äÒ¯ºmÈÓÓ°Ò°
Ëä }ºº¯ÒÓÈ
{, , }0
12
′′
→→
ee
m º¯ºÓº¯äÒ¯ºmÈÓÓ °Ò°Ëä }ºº¯ÒÓÈ
{, , }0
12
′′ ′′
→→
ee
 º¯ººÓÈãÓºË º°}ºã} ã« Ó˺ °¹¯ÈmËãÒmº ¯ÈmËÓ°mº
′′
′′
=
e
e
Q
e
e
1
2
1
2
T
º
Q
äÈ¯ÒÈªººº¯ººÓÈãÓºº¹¯Ëº¯ÈϺmÈÓÒ«m
º¯ºÓº¯äÒ¯ºmÈÓÓº®°Ò°ËäË}ºº¯ÒÓÈ
{, , }0
12
′′
→→
ee
«mã«Ë°«È}ÎËäÈ¯ÒË®
¹Ë¯Ë²ºÈºÈÏÒ°È
{, }
′′
→→
ee
12
}ÈÏÒ°
{, }
′′ ′′
→→
ee
12

sº
e
e
e
e
1
2
1
2
1
2
0
0
=
′′
′′
κ
κ
 ¹ºªºä
e
e
Q
e
e
1
2
1
2
1
2
0
0
=
κ
κ
T
 ºÈ mº°¹ºã
ϺmÈmÒ° Áº¯äãÈäÒ Ò ¹¯ÒäËÓÒm m˯ÎËÓÒË˺¯Ëä© ÓÈ
²ºÒä
=+=+
x
y
Q
x
y
Q
x
y
(
)

T
T
κ
κ
β
β
κ
κ
β
β
1
2
1
2
1
2
1
2
0
0
0
0

° º˺¯ËäËm¯È°°äÈ¯ÒmÈËäºä°ãÈË
=
x
y
x
y

x
y
Q
x
y
=+
κ
κ
β
β
1
2
1
2
0
0

vã˺mÈËãÓºÈÁÁÒÓÓºË¹¯Ëº¯ÈϺmÈÓÒË¹¯Ë°ÈmÒäºmË¹¯ºÒÏmËËÓÒ«
º¯ººÓÈãÓºº ¹¯Ëº¯ÈϺmÈÓÒ« Ò ¹È¯© °ÎÈÒ® }º mÏÈÒäÓº º¯ººÓÈãÓ©ä
Óȹ¯ÈmãËÓÒ«ä
˺¯ËäÈº}ÈÏÈÓÈ
 Ë }  Ò Ò  } È Á Ë  ¯ ©  m © °  Ë ®  ä È ˆ Ë ä È ˆ Ò } Ò  l n ‘ j 
ÙkÓÈã҈Ò˰}È«˺äˈ¯Ò«ÒãÒÓË®ÓÈ«ÈãË­¯ÈµäÓºmkp



                                                                                                                                               → →
                 ÈÓÓ©ä ÈÁÁÒÓÓ©ä ¹¯Ëº­¯ÈϺmÈÓÒËä m ¯‚‚  º¯ˆººÓÈã ӂ  {0, e1 , e2 }  m
                 º­Ëä°ã‚ÈËÓ˺¯ˆºÓº¯äÒ¯ºmÈÓӂ 
         
                                                                                      → →                                                  →     →
                 Ë¯Ë®Ëä}°Ò°ˆËäË}ºº¯ÒÓȈ {0, e1′′, e2′′} Óº¯äÒ¯ºmÈmmË}ˆº¯© e1 Ò e2 ¹º
                                               →                     →
                                  e1   →                    →
                                                            e                                  →                     →
                 Áº¯ä‚ãÈä e1′′ =                   ; e2′′ = 2                   ; κ 1 = e1        ; κ 2 = e2 
                                  κ1                        κ2
         
         
         ° Ë}º mÒˈ  ˆº ¹¯Ëº­¯ÈϺmÈÓÒË ¹Ë¯Ëmº«ËË º¯ˆºÓº¯äÒ¯ºmÈÓӂ  °Ò°
                                                         → →
                 ˆËä‚ }ºº¯ÒÓȈ                   {0, e1′ , e2′ }  m º¯ˆºÓº¯äÒ¯ºmÈÓӂ  °Ò°ˆËä‚ }ºº¯ÒÓȈ
                         → →
                 {0, e1′′, e2′′}  º¯ˆººÓÈã ÓºË º°}ºã }‚ ã« Ó˺ °¹¯ÈmËãÒmº ¯ÈmËÓ°ˆmº
                     →                  →
                     e1′′               e1′
                            = Q               ˆº Q  äȈ¯ÒȪˆººº¯ˆººÓÈã Óºº¹¯Ëº­¯ÈϺmÈÓÒ«m
                                   T
                     →                  →
                     e2′′               e2′
                                                                                                   → →
                 º¯ˆºÓº¯äÒ¯ºmÈÓÓº® °Ò°ˆËäË }ºº¯ÒÓȈ {0, e1′ , e2′ }  «mã«Ëˆ°«ˆÈ}ÎËäȈ¯ÒË®
                                                     → →                                   → →
                 ¹Ë¯Ë²ºÈºˆ­ÈÏÒ°È {e1′ , e2′ } }­ÈÏÒ°‚ {e1′′, e2′′} 
         
                             →                       →                                    →                              →
                            e1       κ1 0            e1′′                                 e1     κ1 0                    e1′
                                                                                                                Q
                                                                                                                     T
                 sº         →     =                 →       ¹ºªˆºä‚                   →    =                         →      ‘ºÈ mº°¹ºã 
                            e2        0 κ2           e2′′                                 e2     0 κ2                    e2′
                 ϺmÈm Ò°  Áº¯ä‚ãÈäÒ   Ò ¹¯ÒäËÓÒm ‚ˆm˯ÎËÓÒË ˆËº¯Ëä©  ÓÈ
                 ²ºÒä
         
         
                                   x′              κ1 0                           x        β1      κ1 0                   x        β1
                                               (                Q       )                    = Q
                                                                     T       T
                                           =                                          +                                        +      
                                   y′              0 κ2                           y        β2      0 κ2                   y        β2
         
         
                                                                                                       x′        x∗
         ° ºˆËº¯ËäËm¯È°°äȈ¯ÒmÈËäºä°ã‚ÈË                                                    =            
                                                                                                       y′        y∗
                 
                                                                x∗       κ1 0                      x        β1
                                                                    = Q                               +       
                                                                y ∗
                                                                         0 κ2                      y        β2
                 
                 vã˺mȈËã ÓºÈÁÁÒÓӺ˹¯Ëº­¯ÈϺmÈÓÒ˹¯Ë°ˆÈmÒäºmmÒ˹¯ºÒÏmËËÓÒ«
                 º¯ˆººÓÈã Óºº ¹¯Ëº­¯ÈϺmÈÓÒ« Ò ¹È¯© °ÎȈҮ }º mÏÈÒäÓº º¯ˆººÓÈã Ó©ä
                 Óȹ¯ÈmãËÓÒ«ä
    
    
    ‘˺¯ËäȺ}ÈÏÈÓÈ