Аналитическая геометрия и линейная алгебра. Умнов А.Е. - 144 стр.

UptoLike

Составители: 

Рубрика: 


Ë} ÒÒ}ÈÁË ¯©m©° Ë®äÈËäÈÒ}Òlnj
ÙkÓÈãÒÒ˰}È«˺äË¯Ò«ÒãÒÓË®ÓÈ«ÈãË¯Èµ

äÓºmkp
vÒ°Ëä©
m
ãÒÓˮө²¯ÈmÓËÓÒ®°
n
ÓËÒÏm˰Ó©äÒ
cȰ°äº¯Òä°Ò°Ëä
m
ãÒÓˮө²¯ÈmÓËÓÒ®°
n
ÓËÒÏm˰Ó©äÒmÒÈ

=+++
=+++
=+++
mnmnmm
nn
nn
β
ξ
α
ξ
α
ξ
α
β
ξ
α
ξ
α
ξ
α
β
ξ
α
ξ
α
ξ
α
...
............................................
...
...
2211
22222121
11212111
ÒãÒ
],1[,
1
mj
j
n
i
iji
==
=
β
ξ
α

ÒãÒÎËmäÈ¯ÒÓº®Áº¯äË
Ax b=
ËäÈ¯ÒÈ
A
¯ÈÏä˯È
mn×
ÒäËË}ºä
¹ºÓËÓ©
α
ji
 È °ºã©
x
Ò
b
°ººmË°mËÓÓº }ºä¹ºÓËÓ©
],1[, ni
i
=
ξ
 Ò
β
j
jm
,[,]
=
1

|¹¯ËËãËÓÒË

¹º¯«ºËÓÓ©® ÓÈº¯ Ò°Ëã
},...,,{
00
2
0
1
n
ξ
ξ
ξ
Ëä ÓÈÏ©mÈ ·jxztu
én¡ntqnu °Ò°Ëä© ãÒÓˮө² ¯ÈmÓËÓÒ®  ˰ãÒ ¹¯Ò ¹º°ÈÓºm}Ë
ªÒ²Ò°Ëãm°Ò°Ëää©¹ºãÈËäm˯өË¯ÈmËÓ°mÈȰÓºË¯ËËÓÒË
°Ò°Ëä© ãÒÓˮө² ¯ÈmÓËÓÒ® äºÎË È}ÎË © ÏȹҰÈÓº m Ë
°ºãÈ
0
0
2
0
1
0
...
n
x
ξ
ξ
ξ
=
 vºmº}¹Óº°m°Ë²ȰÓ©² ¯ËËÓÒ®°Ò°Ëä©ãÒ
Óˮө²¯ÈmÓËÓÒ®ÓÈϺmËäviquén¡ntqnu°Ò°Ëä©
|¹¯ËËãËÓÒË

p°ãÒ°Ò°ËäÈÒäËË²º«©ºÓºȰÓºË¯ËËÓÒËººÓÈÓÈ
Ï©mÈË°« xvkunxztvp m ¹¯ºÒmÓºä °ãÈË  tnxvkunxztv® °Ò°Ë亮
¯ÈmÓËÓÒ®
|¹¯ËËãËÓÒË

lÈ¯Ò È
mnmm
n
n
A
ααα
ααα
ααα
...
............
...
...
21
22221
11211
=
ÓÈÏ©mÈË°« vxtvktvp äÈ¯ÒË®
°Ò°Ëä©  È äÈ¯ÒÈ
mmnmm
n
n
bA
βααα
βααα
βααα
...
...............
...
...
21
222221
111211
=
éjx
¡qénttvpäÈ¯ÒË®ªº®°Ò°Ëä©
 Ë }  Ò Ò    } È Á Ë  ¯ ©   m © °  Ë ®   ä È ˆ Ë ä È ˆ Ò } Ò   l n ‘ j 
ÙkÓÈã҈Ò˰}È«˺äˈ¯Ò«ÒãÒÓË®ÓÈ«ÈãË­¯ÈµäÓºmkp



vÒ°ˆËä©mãÒÓˮө²‚¯ÈmÓËÓÒ®°nÓËÒÏm˰ˆÓ©äÒ
            
            
            
            cȰ°äºˆ¯Òä°Ò°ˆËä‚ m ãÒÓˮө²‚¯ÈmÓËÓÒ®° nÓËÒÏm˰ˆÓ©äÒmÒÈ
            
                      α11ξ1 + α12ξ 2 +...+ α1nξ n = β1
                      α ξ + α ξ +...+ α ξ = β
                      21 1                                                    n
                                                                      ÒãÒ ∑α jiξ i = β j ,
                                   22 2               2n n          2
                                                                                        j = [1, m]   
                      ............................................          i =1
                     α m1ξ1 + α m 2ξ 2 +... +α mnξ n = β m
                     
            
ÒãÒÎËmäȈ¯ÒÓº®Áº¯äË A                            x = b ËäȈ¯ÒÈ A ¯ÈÏä˯È m × n ÒäËˈ}ºä
¹ºÓËӈ© α ji  È °ˆºã­©                     x  Ò        b  °ººˆmˈ°ˆmËÓÓº }ºä¹ºÓËӈ© ξ i , i = [1, n]  Ò
β j , j = [1, m] 
            
            
  |¹¯ËËãËÓÒË           ¹º¯«ºËÓÓ©® ÓÈ­º¯ Ò°Ëã {ξ10 , ξ 20 ,..., ξ n0 }  ­‚Ëä ÓÈÏ©mȈ  ·jxzt€u
  
                         én¡ntqnu °Ò°ˆËä© ãÒÓˮө² ‚¯ÈmÓËÓÒ®   ˰ãÒ ¹¯Ò ¹º°ˆÈÓºm}Ë
                         ªˆÒ²Ò°Ëãm°Ò°ˆËä‚䩹ºã‚ÈËäm˯ө˯ÈmËÓ°ˆmÈ ȰˆÓºË¯Ë ËÓÒË
                         °Ò°ˆËä© ãÒÓˮө² ‚¯ÈmÓËÓÒ® äºÎˈ ˆÈ}ÎË ­©ˆ  ÏȹҰÈÓº m mÒË
                                                 ξ10
                                                 ξ0
                         °ˆºã­È x 0          = 2 vºmº}‚¹Óº°ˆ m°Ë²ȰˆÓ©²¯Ë ËÓÒ®°Ò°ˆËä©ãÒ
                                                 ...
                                                 ξ n0
                         Óˮө²‚¯ÈmÓËÓÒ®  ÓÈϺmËäviquén¡ntqnu°Ò°ˆËä©  
            
            
 |¹¯ËËãËÓÒË            p°ãÒ°Ò°ˆËäÈ  ÒäËˈ²ºˆ«­©ºÓºȰˆÓºË¯Ë ËÓÒˈººÓÈÓÈ
                  Ï©mÈˈ°« xvkunxztvp m ¹¯ºˆÒmÓºä °ã‚ÈË  tnxvkunxztv® °Ò°ˆË亮
                         ‚¯ÈmÓËÓÒ®
            
            
 |¹¯ËËãËÓÒË                                    α11 α12               ... α1n
 
                                                 α 21 α 22             ... α 2 n
                         lȈ¯Ò È           A =                                      ÓÈÏ©mÈˈ°« vxtvktvp äȈ¯ÒË®
                                                  ...  ...             ... ...
                                                 α m1 α m 2            ... α mn
                                                              α11 α12                                      ... α1n         β1
                                                              α 21 α 22                                    ... α 2 n       β2
                         °Ò°ˆËä©   È äȈ¯ÒÈ A b =                                                                    éjx
                                                               ...  ...                                    ... ...         ...
                                                              α m1 α m 2                                   ... α mn        βm
                         ¡qénttvpäȈ¯ÒË®ªˆº®°Ò°ˆËä©