Аналитическая геометрия и линейная алгебра. Умнов А.Е. - 146 стр.

UptoLike

Составители: 

Рубрика: 


Ë} ÒÒ}ÈÁË ¯©m©° Ë®äÈËäÈÒ}Òlnj
ÙkÓÈãÒÒ˰}È«˺äË¯Ò«ÒãÒÓË®ÓÈ«ÈãË¯Èµ

äÓºmkp
rg
... ...
rg
... ... ...
AB
AB
AB
ABC
ABC
ABC
nn nnn
11
22
111
222
=

nÓÈäËÓÈãÓÈ«°Ò°ËäÈ¯ËËÓÒ®
nÈ} Ó˰ºmä˰Óº°Ò °Ò°Ëä©  äºÎÓº °ÈÓºmÒ ºÓȯÎÒm
Ó˰ºm¹ÈËÓÒË¯ÈÓºmº°ÓºmÓº®Ò¯È°Ò¯ËÓÓº®äÈ¯ÒcȰ°äº¯Òä˹˯°ãÈ®}ºÈ
°Ò°ËäÈ°ºmä˰ÓÈÒÓÈ®Ëäm°ËËË¯ËËÓÒ«
iã«¹º°¯ºËÓÒ«º˺¯ËËÓÒ«¹ºãËÏÓ©°ãËÒËãËää©
ËääÈ

È«ãÒÓË®ÓÈ«}ºäÒÓÈÒ«ȰÓ©² ¯ËËÓÒ®ºÓº¯ºÓº®°Ò°Ëä©
È}ÎË«mã«Ë°«ËË ȰÓ©ä¯ËËÓÒËä
iº}ÈÏÈËã°mº
°
xik
i
i
i
n
i
==
ξ
ξ
ξ
1
2
1
...
,[,]
ȰÓ©Ë ¯ËËÓÒ« ºÓº¯ºÓº® °Ò°Ëä© º ˰
Ax o i k
i
=∀=
,[,]1
 cȰ°äº¯Òä °ºãË
=
=
k
i
i
i
xy
1
λ
 º ¹¯ÈmÒãÈä
Ë®°mÒ®°äÈ¯ÒÈäÒã«Ó˺°¹¯ÈmËãÒm©¯ÈmËÓ°mÈ
oxAxAyA
k
i
i
i
k
i
i
i
===
==
)()(
11
λλ

ËääÈº}ÈÏÈÓÈ

ËääÈ

vääÈ ÓË}ºº¯ºº ȰÓºº ¯ËËÓÒ« ºÓº¯ºÓº® °Ò°Ëä©  Ò
ÓË}ºº¯ºº ȰÓºº ¯ËËÓÒ«Ó˺Ӻ¯ºÓº® °Ò°Ëä©«mã«Ë°« Ȱ
Ó©ä¯ËËÓÒËäÓ˺Ӻ¯ºÓº®°Ò°Ëä©
 Ë }  Ò Ò    } È Á Ë  ¯ ©   m © °  Ë ®   ä È ˆ Ë ä È ˆ Ò } Ò   l n ‘ j 
ÙkÓÈã҈Ò˰}È«˺äˈ¯Ò«ÒãÒÓË®ÓÈ«ÈãË­¯ÈµäÓºmkp



                                                                     A1    B1            A1    B1      C1
                                                                     A2    B2            A2    B2      C2
                                                           rg                    = rg                          
                                                                     ...   ...           ...   ...      ...
                                                                     An    Bn            An    Bn      Cn
              
              
              
              
n‚ÓÈäËӈÈã ÓÈ«°Ò°ˆËäȯËËÓÒ®
         
         
         
         nÈ}ˆ Ó˰ºmä˰ˆÓº°ˆÒ °Ò°ˆËä©   äºÎÓº ‚°ˆÈÓºm҈  º­Óȯ‚ÎÒm
Ó˰ºm¹ÈËÓÒ˯ÈÓºmº°ÓºmÓº®Ò¯È° Ò¯ËÓÓº®äȈ¯ÒcȰ°äºˆ¯ÒäˆË¹Ë¯ °ã‚È®}ºÈ
°Ò°ˆËäÈ  °ºmä˰ˆÓÈÒÓÈ®Ëäm°ËËË¯Ë ËÓÒ«
         
         
         i㫹º°ˆ¯ºËÓÒ«º­Ëº¯Ë ËÓÒ«­‚‚ˆ¹ºãËÏÓ©°ãË‚ ÒËãËää©
         
         
 ËääÈ          ­È« ãÒÓË®ÓÈ« }ºä­ÒÓÈÒ« ȰˆÓ©² ¯ËËÓÒ® ºÓº¯ºÓº® °Ò°ˆËä©
            ˆÈ}ÎË«mã«Ëˆ°«ËËȰˆÓ©ä¯ËËÓÒËä
 
         
  iº}ÈÏȈËã°ˆmº
    
                                  ξ1i
                                  ξi
          ‚°ˆ            xi   = 2 , i = [1, k ]   ȰˆÓ©Ë ¯Ë ËÓÒ« ºÓº¯ºÓº® °Ò°ˆËä© ˆº ˰ˆ 
                                  ...
                                  ξni
                                                                                                         k
                  A   x = o , ∀i = [1, k ]  cȰ°äºˆ¯Òä °ˆºã­Ë
                       i
                                                                                                 y = ∑ λi x i  º ¹¯ÈmÒãÈä
                                                                                                        i =1
          Ë®°ˆmÒ®°äȈ¯ÒÈäÒã«Ó˺°¹¯ÈmËãÒm©¯ÈmËÓ°ˆmÈ
         
                                                                 k                 k
                                          A y = A ( ∑ λ i xi ) = ∑ λ i ( A                           x i ) = o 
                                                                i =1              i =1
          
     ËääȺ}ÈÏÈÓÈ
              
              
              
 ËääÈ                    v‚ääÈ ÓË}ºˆº¯ºº ȰˆÓºº ¯ËËÓÒ« ºÓº¯ºÓº® °Ò°ˆËä©   Ò
                    ÓË}ºˆº¯ºº ȰˆÓºº ¯ËËÓÒ« Ó˺Óº¯ºÓº® °Ò°ˆËä© «mã«Ëˆ°« Ȱˆ
                          Ó©ä¯ËËÓÒËäÓ˺Óº¯ºÓº®°Ò°ˆËä©