Аналитическая геометрия и линейная алгебра. Умнов А.Е. - 145 стр.

UptoLike

Составители: 

Рубрика: 

cÈÏËã



vÒ°Ëä©ãÒÓˮө²¯ÈmÓËÓÒ®
|¹¯ËËãËÓÒË

vÒ°ËäÈ  ÓÈÏ©mÈË°« vltvévltvp ˰ãÒ
β
j
jm=∀=01,[,]
 m
¹¯ºÒmÓºä°ãÈËtnvltvévltvp°Ò°Ë亮¯ÈmÓËÓÒ®
˺¯ËäÈ

z¯ºÓË}˯È
zȹËããÒ
iã«ººº©°Ò°ËäÈ©ãÈ°ºmä˰ÓÈÓ˺²ºÒäºÒº°È
ºÓºº©¯ÈÓËËº°ÓºmÓº®äÈ¯Ò©©ã¯ÈmËÓ¯ÈÓ¯È°Ò¯ËÓ
Óº®
iº}ÈÏÈËã°mºÓ˺²ºÒ亰Ò
° °˰mË ¯ËËÓÒË °Ò°Ëä© 
},...,,{
21
n
ξ
ξ
ξ
 ºÈ ª °Ò°Ëä
äºÎÓº¹¯Ë°ÈmÒmmÒË°ãË˺¯ÈmËÓ°mÈ
baaa
nn
=+++
ξ
ξ
ξ
...
2211

Ë
],1[,
T
21
nia
miiii
==
ααα

º°}ºã}mªºä°ãÈË °ºãË°mººÓ©² ãËÓºm˰ãÒÓË®ÓÈ«}ºäÒÓÈÒ«
°ºãºm º¯ÈÏÒ² º°ÓºmÓ äÈ¯Ò º Ò°ãº ãÒÓˮӺ ÓËÏÈmÒ°Ò䩲
°ºãºmº°ÓºmÓº®Ò¯È°Ò¯ËÓÓº®äÈ¯ÒËºÒÓÈ}ºm©ä
iº}ÈÏÈËã°mºº°ÈºÓº°Ò
°¯ÈÓº°ÓºmÓº®äÈ¯Ò©¯ÈmËÓ¯ÈÓ ¯È°Ò¯ËÓÓº®äÈ¯Ò©Ò¯ÈmËÓ
U
rËÏ
º¯ÈÓÒËÓÒ«ºÓº°Ò ¹¯Ë¹ºãºÎÒäºÈÏÒ°Ó©®äÒÓº¯ ¯È°¹ºãºÎËÓmãËmºä
m˯²ÓËäã¯È°Ò¯ËÓÓº®äÈ¯Ò©ÓººÈ¹º˺¯ËäËºÈÏÒ°ÓºääÒ
Óº¯ËÒäËËä˰º¯ÈmËÓ°mº
ba
i
i
r
i
=
=
λ
1
}ºº¯ºËäºÎÓº¹Ë¯Ë¹Ò°ÈmmÒË
ba a
i
i
r
ii
ir
n
=+
==+
∑∑
λ
11
0

|ÓÈ}º ¹º°ãËÓËË ºÏÓÈÈË º °Ò°ËäÈ  ÒäËË ¯ËËÓÒË
{ , ,..., , ,..., }
λλ λ
12
00
r
º˰ºÓÈ°ºmä˰ÓÈ
˺¯ËäÈº}ÈÏÈÓÈ
ÈÈ

Ívrjqznxwéjknlsqkvxzxsnlyínmvyzknélntq¹
bs¹ zvmv ·zvi wé¹un
Ax By C i n
iii
++= =
01,[,]
wnénxnrjsqx
kvltvpqzvpnzv·rntnvi}vlquvqlvxzjzv·tv·zvi
cÈÏËã
vÒ°ˆËä©ãÒÓˮө²‚¯ÈmÓËÓÒ®



    |¹¯ËËãËÓÒË     vÒ°ˆËäÈ   ÓÈÏ©mÈˈ°« vltvévltvp ˰ãÒ β j = 0 ,                           ∀j = [1, m]  m
    
                     ¹¯ºˆÒmÓºä°ã‚ÈËtnvltvévltvp°Ò°ˆË亮‚¯ÈmÓËÓÒ®
              
              
              
    ‘˺¯ËäÈ         i㫈ººˆº­©°Ò°ˆËäÈ  ­©ãȰºmä˰ˆÓÈÓ˺­²ºÒäºÒº°ˆÈ
              ˆºÓºˆº­©¯ÈÓË˺°ÓºmÓº®äȈ¯Ò©­©ã¯ÈmËÓ¯ÈÓ‚¯È°Ò¯ËÓ
     z¯ºÓË}˯È      Óº®
    zȹËããÒ 
              
              
     iº}ÈÏȈËã°ˆmºÓ˺­²ºÒ亰ˆÒ
      
      
      

          ‚°ˆ  °‚Ë°ˆm‚ˈ ¯Ë ËÓÒË °Ò°ˆËä©   {ξ1 ,ξ 2 ,...,ξ n }  ˆºÈ ªˆ‚ °Ò°ˆËä‚
          äºÎÓº¹¯Ë°ˆÈm҈ mmÒ˰ãË‚ Ëº¯ÈmËÓ°ˆmÈ
          
                                 ξ1 a1 + ξ 2 a2 + ... + ξ n an = b 
          
                                                 T
          Ë ai = α1i α 2i  α mi , i = [1, n] 
          
          º°}ºã }‚ m ªˆºä °ã‚ÈË °ˆºã­Ë °mº­ºÓ©² ãËÓºm ˰ˆ  ãÒÓË®ÓÈ« }ºä­ÒÓÈÒ«
          °ˆºã­ºm º­¯Èς Ò² º°Óºmӂ  äȈ¯Ò‚ ˆº Ұ㺠ãÒÓˮӺ ÓËÏÈmÒ°Ò䩲
          °ˆºã­ºmº°ÓºmÓº®Ò¯È° Ò¯ËÓÓº®äȈ¯Ò­‚ˈºÒÓÈ}ºm©ä
          
          
     iº}ÈÏȈËã°ˆmºº°ˆÈˆºÓº°ˆÒ
      
      
         ‚°ˆ ¯ÈÓº°ÓºmÓº®äȈ¯Ò©¯ÈmËÓ¯ÈÓ‚¯È° Ò¯ËÓÓº®äȈ¯Ò©Ò¯ÈmËÓUrËÏ
         º¯ÈÓÒËÓÒ« º­Óº°ˆÒ ¹¯Ë¹ºãºÎÒä ˆº ­ÈÏÒ°Ó©® äÒÓº¯ ¯È°¹ºãºÎËÓ m ãËmºä
         m˯²ÓËä‚クȰ Ò¯ËÓÓº®äȈ¯Ò©ÓºˆºÈ¹ºˆËº¯ËäË º­ÈÏÒ°ÓºääÒ
                                                               r
          Óº¯Ë ÒäËˈä˰ˆº¯ÈmËÓ°ˆmº b =                    ∑ λi   a i }ºˆº¯ºËäºÎÓº¹Ë¯Ë¹Ò°Èˆ mmÒË
                                                              i =1
                                                        r                 n
                                                b = ∑ λi a i +          ∑0        a i 
                                                       i =1            i = r +1
          
          |ÓÈ}º         ¹º°ãËÓËË ºÏÓÈÈˈ ˆº °Ò°ˆËäÈ                                  ÒäËˈ   ¯Ë ËÓÒË
          { λ1 , λ2 ,..., λr ,0,...,0} ˆº˰ˆ ºÓȰºmä˰ˆÓÈ
      
      
      ‘˺¯ËäȺ}ÈÏÈÓÈ
              
              
              
    ~ÈÈÈ          Ívrj qznxwéjknlsqkvxzxsnlyínmvyzkné lntq¹
              
                         bs¹ zvmv ·zvi€ wé¹u€n Ai x + Bi y + Ci = 0 , i = [1, n]  wnénxnrjsqx
                         kvltvpqzvp nzv·rntnvi}vlquvqlvxzjzv·tv·zvi€