Аналитическая геометрия и линейная алгебра. Умнов А.Е. - 147 стр.

UptoLike

Составители: 

Рубрика: 

cÈÏËã



vÒ°Ëä©ãÒÓˮө²¯ÈmÓËÓÒ®
iº}ÈÏÈËã°mº
°
x
ȰÓºË¯ËËÓÒËºÓº¯ºÓº®°Ò°Ëä©È
y
ÓË}ºº¯ºËȰÓºË
¯ËËÓÒË Ó˺Ӻ¯ºÓº® º ˰
Ax o Ay b==,
 ºÈ ¹º
¹¯ÈmÒãÈäË®°mÒ®°äÈ¯ÒÈäÒ°¹¯ÈmËãÒm©¯ÈmËÓ°mÈ
Ax y Ax Ay o b b()
+= + =+=

ËääÈº}ÈÏÈÓÈ
ËääÈ

cÈÏÓº° m² ÓË}ºº¯©² ȰÓ©² ¯ËËÓÒ® Ó˺Ӻ¯ºÓº® °Ò°Ëä©
«mã«Ë°«ȰÓ©ä¯ËËÓÒËäºÓº¯ºÓº®°Ò°Ëä©
iº}ÈÏÈËã°mº
°
x
Ò
y
ȰÓ©Ë ¯ËËÓÒ« Ó˺Ӻ¯ºÓº® °Ò°Ëä© º ˰
Ax b Ay b==,
ºÈ¹º¹¯ÈmÒãÈäË®°mÒ®°äÈ¯ÒÈäÒ°¹¯È
ãÒm©¯ÈmËÓ°mÈ
Ax y Ax Ay b b o()
−= ==

ËääÈº}ÈÏÈÓÈ
~ÈäËÈÓÒ«

°
 jÏm˯ÎËÓÒ«ãËää©°ãËËº
ºËË¯ËËÓÒËÓ˺Ӻ¯ºÓº®°Ò°Ëä©¯ÈmÓËÓÒ®˰ºËË¯ËËÓÒË
ºÓº¯ºÓº®¹ã°ÓË}ºº¯ºËȰÓºË¯ËËÓÒËÓ˺Ӻ¯ºÓº®
Ò ¹ºªºä ¹¯Ë°Èmã«Ë°« Ëã˰ºº¯ÈÏÓ©ä mÓÈÈãË ÒÏÒ mº¹¯º° º
ÓȲºÎËÓÒÒº˺¯ËËÓÒ«ºÓº¯ºÓº®°Ò°Ëä©ãÒÓˮө²¯ÈmÓËÓÒ®
°
|Óº¯ºÓÈ«°Ò°ËäÈãÒÓˮө²¯ÈmÓËÓÒ® m°ËÈ°ºmä˰ÓÈ¹º°}ºã}
ÓËË˰¹º}¯È®ÓË®ä˯ËºÓºȰÓºËÓÈÏ©mÈËäºËzéqkqjstu¯Ë
ËÓÒËã«}ºº¯ººm°ËÓËÒÏm˰Ó©ËÒäËtysnkvnotj·ntqn
°
º°}ºã}ȰÓ©Ë¯ËËÓÒ«°Ò°Ëä©ãÒÓˮө²¯ÈmÓËÓÒ®¹¯Ë°ÈmÒä©
mË°ºãºmºÒ°¹ºãÏ«º¹Ë¯ÈÒÒ°¯ÈmÓËÓÒ«°ãºÎËÓÒ«ÒäÓº
ÎËÓÒ«ÓÈÒ°ãºã«°ºãºmÈÈ}ÎËãËää äºÎÓºmm˰Ò¹ºÓ«
ÒËãÒÓˮӺ®ÏÈmÒ°Ò亰Ò¯ËËÓÒ®ÈÓÈãºÒÓºº¹¯ËËãËÓÒ
˺¯ËäÈ

|Óº¯ºÓÈ« °Ò°ËäÈ  ÒäËË
nArg
ãÒÓˮӺ ÓËÏÈmÒ°Ò䩲
ȰÓ©²¯ËËÓÒ®
cÈÏËã
vÒ°ˆËä©ãÒÓˮө²‚¯ÈmÓËÓÒ®



     iº}ÈÏȈËã°ˆmº
      
            ‚°ˆ  x ȰˆÓºË¯Ë ËÓÒ˺Ӻ¯ºÓº®°Ò°ˆËä©È y ÓË}ºˆº¯ºËȰˆÓºË
            ¯Ë ËÓÒË Ó˺Óº¯ºÓº® ˆº ˰ˆ     A x = o ,      A                           y = b  ‘ºÈ ¹º
            ¹¯ÈmÒãÈäË®°ˆmÒ®°äȈ¯ÒÈäÒ°¹¯ÈmËãÒm©¯ÈmËÓ°ˆmÈ
            
                                  A ( x + y )= A             x + A        y = o + b = b 
        
        ËääȺ}ÈÏÈÓÈ
              
              
    ËääÈ               cÈÏÓº°ˆ  m‚² ÓË}ºˆº¯©² ȰˆÓ©² ¯ËËÓÒ® Ó˺Óº¯ºÓº® °Ò°ˆËä©
                    «mã«Ëˆ°«ȰˆÓ©ä¯ËËÓÒËäºÓº¯ºÓº®°Ò°ˆËä©  
    
           
     iº}ÈÏȈËã°ˆmº
      
            ‚°ˆ        x  Ò   y   ȰˆÓ©Ë ¯Ë ËÓÒ« Ó˺Óº¯ºÓº® °Ò°ˆËä© ˆº ˰ˆ 
                  A   x = b ,      A   y = b ‘ºÈ¹º¹¯ÈmÒãÈäË®°ˆmÒ®°äȈ¯ÒÈäÒ°¹¯È
            mËãÒm©¯ÈmËÓ°ˆmÈ
            
                                  A ( x − y )= A             x − A        y = b − b = o 
        
        ËääȺ}ÈÏÈÓÈ
              
              
~ÈäËÈÓÒ«° jÏ‚ˆm˯ÎËÓÒ«ãËää©°ãË‚ˈˆº

                         º­Ë˯ËËÓÒËÓ˺Óº¯ºÓº®°Ò°ˆËä©‚¯ÈmÓËÓÒ®˰ˆ º­Ë˯ËËÓÒË
                         ºÓº¯ºÓº®¹ã °ÓË}ºˆº¯ºËȰˆÓºË¯ËËÓÒËÓ˺Óº¯ºÓº®
              
                         Ò ¹ºªˆºä‚ ¹¯Ë°ˆÈmã«Ëˆ°« Ëã˰ºº­¯ÈÏÓ©ä mÓÈÈãË Òς҈  mº¹¯º° º
                         ÓȲºÎËÓÒÒº­Ëº¯Ë ËÓÒ«ºÓº¯ºÓº®°Ò°ˆËä©ãÒÓˮө²‚¯ÈmÓËÓÒ®
              
                      °|Óº¯ºÓÈ«°Ò°ˆËäÈãÒÓˮө²‚¯ÈmÓËÓÒ®m°ËȰºmä˰ˆÓȹº°}ºã }‚‚
                           ÓËË˰ˆ ¹º}¯È®ÓË®ä˯˺ӺȰˆÓºËÓÈÏ©mÈËäºËzéqkqjst€u¯Ë
                            ËÓÒËã«}ºˆº¯ººm°ËÓËÒÏm˰ˆÓ©ËÒäË ˆtysnkvnotj·ntqn
              
                      °º°}ºã }‚ȰˆÓ©Ë¯Ë ËÓÒ«°Ò°ˆËä©ãÒÓˮө²‚¯ÈmÓËÓÒ®¹¯Ë°ˆÈmÒä©
                           mmÒ˰ˆºã­ºmˆºÒ°¹ºã ς«º¹Ë¯ÈÒÒ°¯ÈmÓËÓÒ«°ãºÎËÓÒ«Ò‚äÓº
                           ÎËÓÒ«ÓÈÒ°ãºã«°ˆºã­ºmȈÈ}ÎËãËää‚äºÎÓºmm˰ˆÒ¹ºÓ«
                           ˆÒËãÒÓˮӺ®ÏÈmÒ°Ò亰ˆÒ¯Ë ËÓÒ®ÈÓÈãºÒÓºº¹¯ËËãËÓÒ 
              
              
              
    

    ‘˺¯ËäÈ             |Óº¯ºÓÈ« °Ò°ˆËäÈ   ÒäËˈ n − rg A  ãÒÓˮӺ ÓËÏÈmÒ°Ò䩲
    
                         ȰˆÓ©²¯ËËÓÒ®