Аналитическая геометрия и линейная алгебра. Умнов А.Е. - 148 стр.

UptoLike

Составители: 

Рубрика: 


Ë} ÒÒ}ÈÁË ¯©m©° Ë®äÈËäÈÒ}Òlnj
ÙkÓÈãÒÒ˰}È«˺äË¯Ò«ÒãÒÓË®ÓÈ«ÈãË¯Èµ

äÓºmkp
iº}ÈÏÈËã°mº
°cȰ°äº¯ÒämÓÈÈãË°ºmä˰ÓÓ˺Ӻ¯ºÓ°Ò°Ëä
=+++
=+++
=+++
mnmnmm
nn
nn
β
ξ
α
ξ
α
ξ
α
β
ξ
α
ξ
α
ξ
α
β
ξ
α
ξ
α
ξ
α
...
...............................................
...
...
2211
22222121
11212111
Ò ¹¯Ë¹ºãºÎÒä º äÈ¯ÒÈ ÈÏÒ°Óºº äÒÓº¯È ¯È°Ò¯ËÓÓº® äÈ¯Ò©
Ab
|
ÒäËË®¯ÈÓ
r
min{n,m}
¯È°¹ºãºÎËÓÈmãËmºäm˯²ÓËäã¹º
°ãËÓË®
º ˺¯ËäË  º ÈÏÒ°Óºä äÒÓº¯Ë ¹º°ãËÓÒË
mr
¯ÈmÓËÓÒ® «mã«°«
ãÒÓˮөäÒ }ºäÒÓÈÒ«äÒ ¹Ë¯m©²
r ¯ÈmÓËÓÒ® Ò °ã˺mÈËãÓº Ò² äºÎÓº
º¯º°Ò ¹º°}ºã}ºÓÒ ºÎ˰mËÓÓº ºmãËmº¯«°« ¯ËËÓÒ«äÒ
¹Ë¯m©²
r
¯ÈmÓËÓÒ® { º°ÈmÒ²°« ¯ÈmÓËÓÒ«² ¹Ë¯ËÓ˰Ëä m ¹¯Èm©Ë ȰÒ
°ãÈÈËä©Ë°ºË¯ÎÈÒËÓËÒÏm˰Ó©Ë
nrr
ξ
ξ
ξ
,...,,
21
++

=+++
=+++
=+++
++
++
++
nnrrrrrrrrrr
nnrrrr
nnrrrr
ξ
α
ξ
αβ
ξ
α
ξ
α
ξ
α
ξ
α
ξ
αβ
ξ
α
ξ
α
ξ
α
ξ
α
ξ
αβ
ξ
α
ξ
α
ξ
α
,11,2211
211222222121
111111212111
......
......................................................................................
......
......

sËÒÏm˰Ó©Ë
r
ξ
ξ
,...,
1
ÓÈÏ©mÈ°« vxtvktuqmsjktuq ojkqxquuq È
ÓËÒÏm˰Ó©Ë
nr
ξ
,...,
1
+
xkvivltuqwjéjunzéq·nxrquq tnojkqxquuq
¯Ò°mºÒä °mººÓ©ä ÓËÒÏm˰Ó©ä ÓË}ºº¯©Ë }ºÓ}¯ËÓ©Ë ÏÓÈËÓÒ«
rnnr
+
==
µ
ξ
µ
ξ
,...,
11
Ò¯È°°ÒÈËä¹º¹¯ÈmÒãz¯Èä˯È˺¯ËäÈ°ºº
mË°mÒËÒäÏÓÈËÓÒ«º°ÓºmÓ©²ÓËÒÏm˰Ó©²
j
®°ºãË

rr
rn
k
kkrrrr
r
rn
k
kkr
j
M
αµαβα
αµαβα
ξ
......
...............
......
det
1
1
,1
1
1
,1111
=
+
=
+
=

Ë
j [1,r]
È
M
ÈÏÒ°Ó©®äÒÓº¯
 Ë }  Ò Ò    } È Á Ë  ¯ ©   m © °  Ë ®   ä È ˆ Ë ä È ˆ Ò } Ò   l n ‘ j 
ÙkÓÈã҈Ò˰}È«˺äˈ¯Ò«ÒãÒÓË®ÓÈ«ÈãË­¯ÈµäÓºmkp



   iº}ÈÏȈËã°ˆmº
         
         
         °cȰ°äºˆ¯ÒämÓÈÈã˰ºmä˰ˆÓ‚ Ó˺Óº¯ºӂ °Ò°ˆËä‚  
            
                                                        α11ξ1 + α12ξ 2 +...+ α1nξ n = β1
                                                        α ξ + α ξ +...+ α ξ = β
                                                        21 1           22 2              2n n          2
                                                                                                         
                                                         ...............................................
                                                       α m1ξ1 + α m 2ξ 2 +... +α mnξ n = β m
              
              Ò ¹¯Ë¹ºãºÎÒä ˆº äȈ¯ÒÈ ­ÈÏÒ°Óºº äÒÓº¯È ¯È° Ò¯ËÓÓº® äȈ¯Ò©
                  A | b ÒäË Ë®¯ÈÓ r≤min{n,m}¯È°¹ºãºÎËÓÈmãËmºäm˯²ÓËä‚スº
              °ãËÓË®
              
              
              º ˆËº¯ËäË  º ­ÈÏÒ°Óºä äÒÓº¯Ë  ¹º°ãËÓÒË m − r  ‚¯ÈmÓËÓÒ® «mã« ˆ°«
              ãÒÓˮөäÒ }ºä­ÒÓÈÒ«äÒ ¹Ë¯m©² r ‚¯ÈmÓËÓÒ® Ò °ã˺mȈËã Óº Ò² äºÎÓº
              ºˆ­¯º°Òˆ  ¹º°}ºã }‚ ºÓÒ ­‚‚ˆ ˆºÎ˰ˆmËÓÓº ‚ºmãˈmº¯«ˆ °« ¯Ë ËÓÒ«äÒ
              ¹Ë¯m©² r ‚¯ÈmÓËÓÒ® { º°ˆÈm Ò²°« ‚¯ÈmÓËÓÒ«² ¹Ë¯ËÓ˰Ëä m ¹¯Èm©Ë ȰˆÒ
              °ãÈÈËä©Ë°º˯ÎȝÒËÓËÒÏm˰ˆÓ©Ë ξ r +1 , ξ r + 2 ,..., ξ n 
              
                                      α11ξ1 + α12ξ 2 + ... + α1rξ r = β1 − α1r +1ξ r +1 − ...− α1nξ n
                                     α ξ + α ξ + ... + α ξ = β − α
                                      21 1          22 2               2r r          2       2 r +1ξ r +1 − ... − α 2 nξ n
                                                                                                                             
                                      ......................................................................................
                                     α r1ξ1 + α r 2ξ 2 + ... + α rrξ r = β r − α r , r +1ξ r +1 − ... − α r , nξ n
              
              sËÒÏm˰ˆÓ©Ë ξ1 ,..., ξ r  ÓÈÏ©mÈ ˆ°« vxtvkt€uq msjkt€uq ojkqxqu€uq  È
              ÓËÒÏm˰ˆÓ©Ë ξ r +1 ,..., ξ n   xkvivlt€uq wjéjunzéq·nxrquq tnojkqxqu€uq 
              ¯Ò°mºÒä °mº­ºÓ©ä ÓËÒÏm˰ˆÓ©ä ÓË}ºˆº¯©Ë }ºÓ}¯ËˆÓ©Ë ÏÓÈËÓÒ«
              ξ r +1 = µ1 ,...,ξ n = µ n − r үȰ°҈ÈË乺¹¯ÈmÒã‚z¯Èä˯È ˆËº¯ËäÈ °ººˆ
              mˈ°ˆm‚ ÒËÒäÏÓÈËÓÒ«º°ÓºmÓ©²ÓËÒÏm˰ˆÓ©²
              
                                                         j®°ˆºã­Ë
                                                                                  ↓
                                                                              n−r
                                                       α11 ...         β1 − ∑α1, r + k µ k           ... α1r
                          1                                 k =1                                  
                                    ξj =      det ... ...           ...                              ...    ...
                                            M                    n−r
                                                  α r1 ... β r − ∑α r , r + k µ k                    ... α rr
                                                                              k =1
              
              
              Ëj [1,r]ÈM­ÈÏÒ°Ó©®äÒÓº¯