Аналитическая геометрия и линейная алгебра. Умнов А.Е. - 149 стр.

UptoLike

Составители: 

Рубрика: 

cÈÏËã



vÒ°Ëä©ãÒÓˮө²¯ÈmÓËÓÒ®
°˹˯ ¯È°°äº¯Òä ºÓº¯ºÓ °Ò°Ëä º ãÒÓˮӺä °mº®°m
º¹¯ËËãÒËãË® ˺¯ËäÈ  ¹ºãÈËä m©¯ÈÎËÓÒ« ã« ÏÓÈËÓÒ®
ÓËÒÏm˰Ó©²

,],1[,;],1[,
1
rnirj
iir
rn
k
kjkj
====
+
=
µ
ξ
µκ
ξ

Ë
==
=
+
+
.],1[,],1[,
......
...............
......
det
1
,1
1,111
rnkrj
M
rrkrrr
rkr
jk
ααα
ααα
κ
j
®°ºãË
sÈ}ºÓËmäÈ¯ÒÓº®Áº¯äË°ººÓºËÓÒ«äº©ÏȹҰÈÓ©È}
rn
rnrrr
rn
rn
n
r
r
r
+
+
=
µ
µ
µ
κκκ
κκκ
κκκ
ξ
ξ
ξ
ξ
ξ
ξ
2
1
,21
,22221
,11211
2
1
2
1
100
010
001
ÒãÒ
n
r
r
rnrrr
rn
rn
r
ξ
ξ
κκκ
κκκ
κκκ
ξ
ξ
ξ
2
1
,21
,22221
,11211
2
1
+
+
=

°ºãÈÈ«
0...,1
321
=====
rn
µµµµ
¹ºãÒä¯ËËÓÒË
}0,...,0,1,,...,,{
11
2
1
1
r
ξ
ξ
ξ

kÓÈ㺠ÒÓº ¹¯Ò
0...,1,0
321
=====
rn
µµµµ
ÓÈ®Ëä ¯ËËÓÒË
}0,...,1,0,,...,,{
22
2
2
1
r
ξ
ξ
ξ

¯ººãÎÈ« ªº ¹¯ºË°° ¹ºãÒä m }ºÓË ¹¯Ò
1,0...
1321
======
rnrn
µµµµµ
¯ËËÓÒË
}1,...,0,0,,...,,{
21
rn
r
rnrn
ξ
ξ
ξ

vºmº}¹Óº°¹ºãËÓÓ©² ¯ËËÓÒ® Ëä ÓÈÏ©mÈ tvéujstvp {ytljunt
zjstvpxqxznuvpén¡ntqp
°º}ÈÎËä˹˯º¹º°¯ºËÓÓ©Ë
n
r
ȰÓ©²¯ËËÓÒ®ºÓº¯ºÓº®°Ò°Ë
ä© ¯ÈmÓËÓÒ®  «mã«°« ãÒÓˮӺ ÓËÏÈmÒ°Òä©äÒ iË®°mÒËãÓº
ÏȹҰÈmªÒ¯ËËÓÒ«}È}°¯º}Ò¹ºãÒääÈ¯ÒmÒÈ
cÈÏËã
vÒ°ˆËä©ãÒÓˮө²‚¯ÈmÓËÓÒ®



        °‘˹˯  ¯È°°äºˆ¯Òä ºÓº¯ºӂ  °Ò°ˆËä‚ º ãÒÓˮӺä‚ °mº®°ˆm‚
             º¹¯ËËã҈ËãË® ˆËº¯ËäÈ   ¹ºã‚ÈËä m©¯ÈÎËÓÒ« ã« ÏÓÈËÓÒ®
             
             ÓËÒÏm˰ˆÓ©²
                                           n−r
             ξ j =       ∑ κ jk µ k ,   j = [1, r ] ; ξ r + i = µ i , i = [1, n − r ] ,   
                                           k =1
            
            Ë
                                          α11 ... − α1, r + k                ... α1r
                                     1
                             κ jk   = det ... ...     ...                    ... ... , j = [1, r ] , k = [1, n − r ] .
                                     M                                                                                 
                                          α r1 ... − α r , r + k             ... α rr
                                                                    ↑
            j®°ˆºã­Ë
            
            sÈ}ºÓËmäȈ¯ÒÓº®Áº¯ä˰ººˆÓº ËÓÒ«  亂ˆ­©ˆ ÏȹҰÈÓ©ˆÈ}
            
       ξ1      κ 11 κ 12              κ 1, n − r
       ξ2     κ 21 κ 22               κ 2, n − r
                                                    µ1      ξ1   κ 11 κ 12                      κ 1, n − r ξ r +1
       ξr      κ    κ r2              κ r,n− r          µ2      ξ2   κ 21 κ 22                      κ 2, n − r ξ r + 2
             = r1                                                   =
      ξ r +1    1    0                           0       ÒãÒ                                                
      ξr +2     0    1                           0     µ n−r    ξr   κ r1 κ r 2                     κ r,n− r ξ n
                                           
       ξn       0    0                           1

            
            
        °ºãÈÈ« µ1 = 1 , µ 2 = µ 3 = ... = µ n −r = 0 ¹ºã‚Òä¯Ë ËÓÒË {ξ11 , ξ 21 ,..., ξ r1 ,1,0,...,0} 
        
             kÓÈ㺠ÒÓº      ¹¯Ò       µ1 = 0 , µ 2 = 1, µ 3 = ... = µ n −r = 0  ÓÈ®Ëä              ¯Ë ËÓÒË
            {ξ12 ,ξ 22 ,...,ξ r2 , 0 , 1, ... , 0} 
            
            ¯ººãÎÈ«                    ªˆºˆ           ¹¯º˰°            ¹ºã‚Òä                m          }ºÓË             ¹¯Ò
                µ1 =µ 2 = µ 3 = ... = µ n − r −1 = 0, µ n − r = 1 ¯Ë       ËÓÒË {ξ1n − r ,ξ 2n − r ,...,ξ rn − r ,0,0, ... ,1} 
            
            
            vºmº}‚¹Óº°ˆ  ¹ºã‚ËÓÓ©² ¯Ë ËÓÒ® ­‚Ëä ÓÈÏ©mȈ  tvéujstvp {ytljunt
            zjstvpxqxznuvpén¡ntqp
            
            

        °º}ÈÎËäˆË¹Ë¯ ˆº¹º°ˆ¯ºËÓÓ©ËnrȰˆÓ©²¯Ë ËÓÒ®ºÓº¯ºÓº®°Ò°ˆË
             ä© ‚¯ÈmÓËÓÒ®   «mã« ˆ°« ãÒÓˮӺ ÓËÏÈmÒ°Òä©äÒ iË®°ˆm҈Ëã Óº
             ÏȹҰÈmªˆÒ¯Ë ËÓÒ«}È}°ˆ¯º}Ò¹ºã‚ÒääȈ¯Ò‚mÒÈ