Аналитическая геометрия и линейная алгебра. Умнов А.Е. - 150 стр.

UptoLike

Составители: 

Рубрика: 


Ë} ÒÒ}ÈÁË ¯©m©° Ë®äÈËäÈÒ}Òlnj
ÙkÓÈãÒÒ˰}È«˺äË¯Ò«ÒãÒÓË®ÓÈ«ÈãË¯Èµ

äÓºmkp
1...00...
........................
0...10...
0...01...
21
22
2
2
1
11
2
1
1
rn
r
rnrn
r
r
ξ
ξ
ξ
ξ
ξ
ξ
ξ
ξ
ξ

~ÈäËÒä ºËË¯ÈÓ°ºÓº®°º¯ºÓ©ÓËäËÓ  ËËä
nr
,
¹º°}ºã}°ºË¯
ÎÒÓËÓãËmº®äÒÓº¯ªºº¹º¯«}ÈÓº°¯º®°º¯ºÓ©ÓËºãËËäÒ°ãº
°¯º} m ªº®äÈ¯ÒË¯ÈmÓºË
nr
,
Ò ¹ººä¯ÈÓmºÓº°Ò¯ÈmËÓ
,
rn
º
º}ÈÏ©mÈËãÒÓË®ÓÓËÏÈmÒ°Ò亰¹º°¯ºËÓÓ©²ȰÓ©²¯ËËÓÒ®
˺¯ËäÈº}ÈÏÈÓÈ

|¹¯ËËãËÓÒË

Ðytljuntzjstvpxqxznuvp én¡ntqpã«°Ò°Ëä©ãÒÓˮө²¯ÈmÓËÓÒ®
 ÓÈÏ©mÈË°« °ºmº}¹Óº°ã©²
nA rg
ȰÓ©² ãÒÓˮӺ
ÓËÏÈmÒ°Ò䩲¯ËËÓÒ®ºÓº¯ºÓº®°Ò°Ëä©Ë
n
Ò°ãºÓË
ÒÏm˰Ó©²m°Ò°ËäËÈ
A
ËËº°ÓºmÓÈ«äÈ¯ÒÈ
˺¯ËäÈ

zÈκË ȰÓºË ¯ËËÓÒË ºÓº¯ºÓº® °Ò°Ëä©  äºÎË ©
¹¯Ë°ÈmãËÓºmËãÒÓˮӺ®}ºäÒÓÈÒÒȰÓ©²¯ËËÓÒ®º¯È
ÏÒ²Óº¯äÈãÓÁÓÈäËÓÈãÓ°Ò°Ëä¯ËËÓÒ®
iº}ÈÏÈËã°mº
°ÈÓº¯ËËÓÒË
},...,,{
21
n
ξ
ξ
ξ
ºÓº¯ºÓº®°Ò°Ëä©cȰ°äº¯ÒääÈ
¯Ò¯ÈÏä˯È
()nr n−+
×
1


1...00...
........................
0...10...
0...01...
......
21
22
2
2
1
11
2
1
1
2121
rn
r
rnrn
r
r
nrrr
++
ξ
ξ
ξ
ξ
ξ
ξ
ξ
ξ
ξ
ξ
ξ
ξ
ξ
ξ

¯ÈÓ}ºº¯º®°ºÓº®°º¯ºÓ©ºËmÒÓºÓËäËÓËËä
nr

v¯º®°º¯ºÓ©¹Ë¯m©Ë
r
°ºãºmªº®äÈ¯Ò©«mã«°«ãÒÓˮөäÒ}ºä
ÒÓÈÒ«äÒÏÈÈÓÓ©äÒ°ººÓºËÓÒ«äÒ¹º°ãËÓÒ²
nr
°ºãºmiË®
°mÒËãÓº ªÒ °ººÓºËÓÒ« °m«Ï©mÈÒË ÏÓÈËÓÒ« °mººÓ©² Ò º°ÓºmÓ©²
¹Ë¯ËäËÓÓ©²vltqqznnls¹kxn}xzévr äÈ¯Ò©  Ò ¹ººä m ªº®
äÈ¯ÒË }ÈÎ ©® ÒÏ ¹Ë¯m©²
r
°ºãºm ˰ ãÒÓË®ÓÈ« }ºäÒÓÈÒ« ¹º°ãËÓÒ²
nr

 Ë }  Ò Ò    } È Á Ë  ¯ ©   m © °  Ë ®   ä È ˆ Ë ä È ˆ Ò } Ò   l n ‘ j 
ÙkÓÈã҈Ò˰}È«˺äˈ¯Ò«ÒãÒÓË®ÓÈ«ÈãË­¯ÈµäÓºmkp



                                        1
                                              ξ1  1
                                                        ξ2      1
                                                                  ...  ξr          1     0 ... 0
                                              ξ12       ξ 22      ... ξ r2         0     1 ... 0
                                                                                                            
                                              ...       ...       ...   ...       ... ... ... ...
                                              n−r       n−r             n−r
                                             ξ1        ξ2         ... ξ r         0 0 ... 1
            
         ~ÈäˈÒ䈺Ë˯ÈÓ°ºÓº®°ˆº¯ºÓ©ÓËäËÓ ËËä n − r , ¹º°}ºã }‚°º˯
         Î҈ÓËӂãËmº®äÒÓº¯ªˆºº¹º¯«}ÈÓº°¯‚º®°ˆº¯ºÓ©ÓË­ºã ËËäÒ°ãº
         °ˆ¯º} m ªˆº® äȈ¯ÒË ¯ÈmÓºË n − r ,  Ò ¹ºˆºä‚ ¯ÈÓ m ˆºÓº°ˆÒ ¯ÈmËÓ n − r,  ˆº
         º}ÈÏ©mÈˈãÒÓˮӂ ÓËÏÈmÒ°Ò亰ˆ ¹º°ˆ¯ºËÓÓ©²ȰˆÓ©²¯Ë ËÓÒ®
            
    ‘˺¯ËäȺ}ÈÏÈÓÈ
          
          
          
 |¹¯ËËãËÓÒË      Ðytljuntzjstvpxqxznuvpén¡ntqpã«°Ò°ˆËä©ãÒÓˮө²‚¯ÈmÓËÓÒ®
 
                      ÓÈÏ©mÈˈ°« °ºmº}‚¹Óº°ˆ  ã ­©² n − rg A  ȰˆÓ©² ãÒÓˮӺ
                   ÓËÏÈmÒ°Ò䩲¯Ë ËÓÒ®ºÓº¯ºÓº®°Ò°ˆËä©  Ë n Ò°ãºÓË
                         ÒÏm˰ˆÓ©²m°Ò°ˆËäË  È A Ë˺°ÓºmÓÈ«äȈ¯ÒÈ
            
            
            
 ‘˺¯ËäÈ                zÈÎºË ȰˆÓºË ¯ËËÓÒË ºÓº¯ºÓº® °Ò°ˆËä©   äºÎˈ ­©ˆ 
                  ¹¯Ë°ˆÈmãËÓºmmÒËãÒÓˮӺ®}ºä­ÒÓÈÒÒȰˆÓ©²¯ËËÓÒ®º­¯È
                        ς Ò²Óº¯äÈã ӂ Á‚ÓÈäËӈÈã ӂ °Ò°ˆË䂯ËËÓÒ®
            
            
  iº}ÈÏȈËã°ˆmº
   
      ‚°ˆ ÈÓº¯Ë ËÓÒË {ξ1 , ξ 2 ,..., ξ n } ºÓº¯ºÓº®°Ò°ˆËä©  cȰ°äºˆ¯ÒääȈ
      ¯Ò‚¯ÈÏä˯È ( n − r + 1) × n 
      
                                  ξ1              ξ2       ...  ξr          ξ r +1 ξ r + 2      ... ξ n
                                  ξ11             ξ 21     ...  ξ r1           1      0         ... 0
           ξ12              ξ 22     ... ξ r2           0       1         ...    0   
                                  ...             ...      ...   ...          ...    ...        ...   ...
                                  n−r             n−r            n−r
                                 ξ1              ξ2        ... ξ r            0       0         ...    1
          
          ¯ÈÓ}ºˆº¯º®°ºÓº®°ˆº¯ºÓ©ºËmÒÓºÓËäËÓ ËËä n − r 
          
          v¯‚º®°ˆº¯ºÓ©¹Ë¯m©Ë r°ˆºã­ºmªˆº®äȈ¯Ò©«mã« ˆ°«ãÒÓˮөäÒ}ºä
          ­ÒÓÈÒ«äÒ ÏÈÈÓÓ©äÒ°ººˆÓº ËÓÒ«äÒ  ¹º°ãËÓÒ² n − r °ˆºã­ºmiË®
          °ˆm҈Ëã Óº ªˆÒ °ººˆÓº ËÓÒ« °m«Ï©mÈ ÒË ÏÓÈËÓÒ« °mº­ºÓ©² Ò º°ÓºmÓ©²
          ¹Ë¯ËäËÓÓ©² vltq q zn n ls¹ kxn} xzévr äȈ¯Ò©   Ò ¹ºˆºä‚ m ªˆº®
          äȈ¯ÒË }ÈΩ® ÒÏ ¹Ë¯m©² r °ˆºã­ºm ˰ˆ  ãÒÓË®ÓÈ« }ºä­ÒÓÈÒ« ¹º°ãËÓÒ²
          n − r