Аналитическая геометрия и линейная алгебра. Умнов А.Е. - 152 стр.

UptoLike

Составители: 

Рубрика: 


Ë} ÒÒ}ÈÁË ¯©m©° Ë®äÈËäÈÒ}Òlnj
ÙkÓÈãÒÒ˰}È«˺äË¯Ò«ÒãÒÓË®ÓÈ«ÈãË¯Èµ

äÓºmkp
ãËääË¹¯ºÒÏmºã ÓºË¯ËËÓÒËºÓº¯ºÓº®°Ò°Ëä©
y
¹¯Ë°ÈmÒäº
mË
yxx
=−
0
|°Èmº°¹ºãϺmÈmÒ°m˯ÎËÓÒËäãËää©
¹ºãÈËä
xyx
=+
0

vã˰mÒËº}ÈÏÈÓº
jÏ˺¯ËäÒÓ˹º°¯Ë°mËÓÓºm©Ë}ÈË
vã˰mÒË

iã«ººº© ºÓº¯ºÓÈ« °Ò°ËäÈ °
mn <
ÒäËãÈ ÓËÓãËmºË
¯ËËÓÒËÓ˺²ºÒäºÒº°ÈºÓºº©¯ÈÓËËº°ÓºmÓº®äÈ¯Ò©
ºmãËmº¯«ã°ãºmÒ
nA <
r
g

{ȰÓºä °ãÈË È º°ÓºmÓÈ«äÈ¯ÒÈ°Ò°Ëä© }mȯÈ
ÓÈ«ªº°ãºmÒË¯ÈmÓº°ÒãÓº¯ÈmËÓ°m
det
A =
0
jÓºË ¹ºãËÏÓºË ã« ¹¯ÒãºÎËÓÒ® °ãºmÒË °ºmä˰Óº°Ò °Ò°Ëä© ãÒÓˮө²
¯ÈmÓËÓÒ®ÈË
˺¯ËäÈ

n¯ËºãäÈ
iã«ººº©°Ò°ËäÈ©ãÈ°ºmä˰Óº®Ó˺²ºÒäºÒº°
ÈºÓºº©}ÈκË¯ËËÓÒË
T
21
...
m
y
ηηη
=
°Ò°Ëä©
=+++
=+++
=+++
0...
...............................................
0...
0...
2211
2222112
1221111
mmnnn
mm
mm
ηαηαηα
ηαηαηα
ηαηαηα

ÒãÒ m äÈ¯ÒÓºä Ë
Ay o
T
=
 ºmãËmº¯«ãº °ãºmÒ
0
1
=
=
m
i
ii
ηβ
ÒãÒmäÈ¯ÒÓºämÒË
by
T
=
0

iº}ÈÏÈËã°mºÓ˺²ºÒ亰Ò
° °Ò°ËäÈ ¯ÈmÓËÓÒ®  °ºmä˰ÓÈ º ˰ ã« }Èκ º ËË ¯ËËÓÒ«
x
°¹¯ÈmËãÒmº ¯ÈmËÓ°mº
bAx
=
 sÈ®Ëä ¹¯ºÒÏmËËÓÒË
by
T
m
¹¯Ë¹ºãºÎËÓÒÒº
Ay o
T
=
jäËËä
 Ë }  Ò Ò    } È Á Ë  ¯ ©   m © °  Ë ®   ä È ˆ Ë ä È ˆ Ò } Ò   l n ‘ j 
ÙkÓÈã҈Ò˰}È«˺äˈ¯Ò«ÒãÒÓË®ÓÈ«ÈãË­¯ÈµäÓºmkp



          ãËää˹¯ºÒÏmºã ÓºË¯Ë ËÓÒ˺Ӻ¯ºÓº®°Ò°ˆËä©   y ¹¯Ë°ˆÈmÒäº
          mmÒË y = x − x 0 |ˆ° Èmº°¹ºã ϺmÈm Ò° ‚ˆm˯ÎËÓÒËäãËää©
         ¹ºã‚ÈËä x = y + x 0 
         
    vã˰ˆmÒ˺}ÈÏÈÓº
           
           
           
           jψ˺¯ËäÒÓ˹º°¯Ë°ˆmËÓÓºm©ˆË}Èˈ
           
 vã˰ˆmÒË       iã« ˆºº ˆº­© ºÓº¯ºÓÈ« °Ò°ˆËäÈ   ° n < m  ÒäËãÈ ÓËӂãËmºË
           ¯ËËÓÒËÓ˺­²ºÒäºÒº°ˆÈˆºÓºˆº­©¯ÈÓË˺°ÓºmÓº®äȈ¯Ò©
 
                  ‚ºmãˈmº¯«ã‚°ãºmÒ  rg A < n 
                  
                  { ȰˆÓºä °ã‚ÈË }ºÈ º°ÓºmÓÈ« äȈ¯ÒÈ °Ò°ˆËä©   }mȯȈ
                  ÓÈ«ªˆº‚°ãºmÒ˯ÈmÓº°Òã Óº¯ÈmËÓ°ˆm‚ det A = 0 
           
           
           
           jÓºË ¹ºãËÏÓºË ã« ¹¯ÒãºÎËÓÒ® ‚°ãºmÒË °ºmä˰ˆÓº°ˆÒ °Ò°ˆËä© ãÒÓˮө²
‚¯ÈmÓËÓÒ®Èˈ
           
           
 ‘˺¯ËäÈ        i㫈ººˆº­©°Ò°ˆËäÈ  ­©ãȰºmä˰ˆÓº®Ó˺­²ºÒäºÒº°
                                                                                                              T
     n¯ËºãäÈ      ˆÈˆºÓºˆº­©}Èκ˯ËËÓÒË y = η1 η 2                                            ... η m       °Ò°ˆËä©
                         

                                                              α11η1 + α 21η 2 + ... + α m1η m = 0
                                                             α η + α η + ... + α η = 0
                                                              12 1           22 2                m2 m
                                                                                                               
                                                               ...............................................
                                                             α1nη1 + α 2 nη 2 + ... + α mnη m = 0
                         
                         

                                                                                      y = o  ‚ºmãˈmº¯«ãº ‚°ãºmÒ 
                                                                                  T
                             ÒãÒ m äȈ¯ÒÓºä mÒË                       A
                             m
                         ∑ β iηi = 0  ÒãÒmäȈ¯ÒÓºämÒË
                                                                                             T
                                                                                         b        y = 0 
                             i =1


     iº}ÈÏȈËã°ˆmºÓ˺­²ºÒ亰ˆÒ
         
         
         ‚°ˆ  °Ò°ˆËäÈ ‚¯ÈmÓËÓÒ®   °ºmä˰ˆÓÈ ˆº ˰ˆ  ã« }Èκº ËË ¯Ë ËÓÒ«
                                                                                                                                   T
             x  °¹¯ÈmËãÒmº ¯ÈmËÓ°ˆmº b = A                                 x  sÈ®Ëä ¹¯ºÒÏmËËÓÒË                      b       y  m
                                                    T
          ¹¯Ë¹ºãºÎËÓÒÒˆº                   A       y = o jäËËä