Аналитическая геометрия и линейная алгебра. Умнов А.Е. - 153 стр.

UptoLike

Составители: 

Рубрика: 

cÈÏËã



vÒ°Ëä©ãÒÓˮө²¯ÈmÓËÓÒ®
by Ax y xAy xo
T
T
TT T
()
====
0

iº}ÈÏÈËã°mºº°ÈºÓº°Ò
°
by
T
=
0
ã« síivmv¯ËËÓÒ« °Ò°Ëä© ãÒÓˮө² ¯ÈmÓËÓÒ®
Ay o
T
=
 ºÈ ºÒË ¯ËËÓÒ« °Ò°Ëä ãÒÓˮө² ¯ÈmÓËÓÒ®
Ay o
T
=
Ò
Ay o
by
T
T
=
=
0
°ºm¹ÈÈÒã«ªÒ²°Ò°ËäÒ°ãºãÒÓˮӺ
ÓËÏÈmÒ°Ò䩲¯ËËÓÒ®ºÒÓÈ}ºmººªºä°ºãȰӺ˺¯ËäË
mAm
A
b
−=
r
g
r
g
T
T

ÒãÒ
r
g
r
g
T
T
A
A
b
=

Óº ¹º°}ºã} ¯ÈÓ äÈ¯Ò© ÓË äËÓ«Ë°« ¹¯Ò ËË ¯ÈÓ°¹ºÓÒ¯ºmÈÓÒÒ º ÒäËË
ä˰º¯ÈmËÓ°mº
r
g
|r
g
Ab A=
ºÏÓÈÈËËm°Òã ˺¯Ëä©°ºmä˰
Óº°°Ò°Ëä©ãÒÓˮө²¯ÈmÓËÓÒ®
Ax b=

˺¯ËäÈº}ÈÏÈÓÈ
˯ÓÈÒmÓºË º}ÈÏÈËã°mº ªº® ˺¯Ëä© ¹¯ÒmËËÓº m ¯ÈÏËãË Ùpm}ãÒºmº
¹¯º°¯ÈÓ°mºµ°ä˺¯Ëä©Ò
lËºÈ°°È
¯È}Ò˰}ºË ¹¯ÒäËÓËÓÒË ˺¯Ëä  Ò  ÏÈ¯Ó«Ë°« Ëä º ÏȯÈÓËË
}È}¹¯ÈmÒãºÓËÒÏm˰Óº°ºmä˰ÓÈãÒ¯ËÈËäÈ«°Ò°ËäÈ|¹¯ËËãËÓÒËÎË¯ÈÓºmº°
Óºº®Ò¯È°Ò¯ËÓÓº®äÈ¯ÒÓËÏÈmÒ°Òäºº¹ºÒ°}È¯ËËÓÒ® º}ÈÏ©mÈË°«m˰äÈÓË
¯ÈÒºÓÈãÓº®°º}ÒϯËÓÒ«¯È°²ººmÈÓÒ«m©Ò°ãÒËãÓ©²¯Ë°¯°ºm¹¯ºË¯º®
rºãËËªÁÁË}ÒmÓ©äÒ°ãÒËãÓ©äÈ㺯Òäºä¹ºÏmºã«ÒäãÒºÓȲºÒ
ºËË ¯ËËÓÒË °Ò°Ëä©  ãÒº °ÈÓÈmãÒmÈ ÁÈ} ËË Ó˰ºmä˰Óº°Ò «mã«Ë°«
unzvljyxxj
vªºº äËºÈ ÏÈ}ãÈË°« m ¹¯ÒmËËÓÒÒ ¯È°Ò¯ËÓÓº® äÈ¯Ò© °Ò°Ëä©
ãÒÓˮө² ¯ÈmÓËÓÒ® } tjqivsnn wévxzvuy kqly ¹º°ã˺mÈËãÓº° È} ÓÈÏ©mÈË䩲
ësnuntzjét} ¹¯Ëº¯ÈϺmÈÓÒ®}ÈκË ÒÏ}ºº¯©²ÓËäËÓ«Ëº˺¯ËËÓÒ«°Ò°Ëä©
¯ÈmÓËÓÒ®
cÈÏËã
vÒ°ˆËä©ãÒÓˮө²‚¯ÈmÓËÓÒ®



                                  T                                          T        T              T
                              b        y =( A          x )T y = x                A        y = x           o = 0 
        
    iº}ÈÏȈËã°ˆmºº°ˆÈˆºÓº°ˆÒ
        
                          T
        ‚°ˆ         b       y = 0  ã« síivmv ¯Ë ËÓÒ« °Ò°ˆËä© ãÒÓˮө² ‚¯ÈmÓËÓÒ®
                T
            A       y = o           ‘ºÈ       º­ÒË         ¯Ë ËÓÒ«           °Ò°ˆËä       ãÒÓˮө²           ‚¯ÈmÓËÓÒ®

                T
                                       A
                                               T
                                                   y = o
            A       y = o Ò                 T              °ºm¹ÈÈ ˆÒ㫪ˆÒ²°Ò°ˆËäÒ°ãºãÒÓˮӺ
                                        b         y = 0
        ÓËÏÈmÒ°Ò䩲¯Ë ËÓÒ®ºÒÓÈ}ºmººªˆºä‚°ºãȰӺˆËº¯ËäË
        
                                                                   T                                          T
                                               T              A                                T          A
                              m − rg A             = m − rg            ÒãÒ rg A          = rg           
                                                              b                                           b
        
        Óº ¹º°}ºã }‚ ¯ÈÓ äȈ¯Ò© ÓË äËӫˈ°« ¹¯Ò ËË ˆ¯ÈÓ°¹ºÓÒ¯ºmÈÓÒÒ ˆº ÒäËˈ
        ä˰ˆº¯ÈmËÓ°ˆmº rg A | b = rg A ºÏÓÈÈ ËËm°Òよ˺¯Ëä©°ºmä˰ˆ
      Óº°ˆ °Ò°ˆËä©ãÒÓˮө²‚¯ÈmÓËÓÒ® A x = b 
      
      
   ‘˺¯ËäȺ}ÈÏÈÓÈ
        
        
        k㠈˯ÓȈÒmÓºË º}ÈÏȈËã °ˆmº ªˆº® ˆËº¯Ëä© ¹¯ÒmËËÓº m ¯ÈÏËãË Ùpm}ãÒºmº
¹¯º°ˆ¯ÈÓ°ˆmºµ °äˆËº¯Ëä©Ò 
        
        
        
        
lˈº€È‚°°È
        
        
        
        ¯È}ˆÒ˰}ºË ¹¯ÒäËÓËÓÒË ˆËº¯Ëä  Ò  ÏȈ¯‚ӫˈ°« ˆËä ˆº ÏȯÈÓËË
}È}¹¯ÈmÒãºÓËÒÏm˰ˆÓº°ºmä˰ˆÓÈãÒ¯Ë ÈËäÈ«°Ò°ˆËäÈ|¹¯ËËãËÓÒËÎ˯ÈÓºmº°
ÓºmÓº®Ò¯È° Ò¯ËÓÓº®äȈ¯ÒÓËÏÈmÒ°Ò人ˆ¹ºÒ°}È¯Ë ËÓÒ®º}ÈÏ©mÈˈ°«m˰ äÈÓË
¯ÈÒºÓÈã Óº® °ˆº}ÒϯËÓÒ«¯È°²ººmÈÓÒ«m©Ò°ã҈Ëã Ó©²¯Ë°‚¯°ºm ¹¯ºË‚¯º®
        
        rºãË˪ÁÁË}ˆÒmÓ©äm©Ò°ã҈Ëã Ó©äÈ㺯҈äºä¹ºÏmºã« ÒäãÒ­ºÓȲº҈ 
º­ËË ¯Ë ËÓÒË °Ò°ˆËä©   ãÒ­º ‚°ˆÈÓÈmãÒmȈ  ÁÈ}ˆ ËË Ó˰ºmä˰ˆÓº°ˆÒ «mã«Ëˆ°«
unzvl­jyxxj
        
        v‚ˆ  ªˆºº äˈºÈ ÏÈ}ã Èˈ°« m ¹¯ÒmËËÓÒÒ ¯È° Ò¯ËÓÓº® äȈ¯Ò© °Ò°ˆËä©
ãÒÓˮө² ‚¯ÈmÓËÓÒ® } tjqivsnn wévxzvuy kqly ¹º°ã˺mȈËã Óº°ˆ  ˆÈ} ÓÈÏ©mÈË䩲
ësnuntzjét€}¹¯Ëº­¯ÈϺmÈÓÒ®}ÈκËÒÏ}ºˆº¯©²ÓËäËӫˈº­Ëº¯Ë ËÓÒ«°Ò°ˆËä©
‚¯ÈmÓËÓÒ®