Аналитическая геометрия и линейная алгебра. Умнов А.Е. - 154 стр.

UptoLike

Составители: 

Рубрика: 


Ë} ÒÒ}ÈÁË ¯©m©° Ë®äÈËäÈÒ}Òlnj
ÙkÓÈãÒÒ˰}È«˺äË¯Ò«ÒãÒÓË®ÓÈ«ÈãË¯Èµ

äÓºmkp
º ÙÓÈÒºãËË ¹¯º°©äµ ºä ¯È°Ò¯ËÓÓº® äÈ¯Ò© ä© Ëä ¹ºÓÒäÈ
kné}tíí zénymvstyí {véuy Ë °ãÈ® È
α
LM
=
0
¹¯Ò
ji >
 ã« }ºº¯º® mºÏ
äºÎÓº ¯Ë}¯¯ËÓÓºË ÓȲºÎËÓÒË ÓËÒÏm˰Ó©² ¹Ëä ãÒ¯ËËÓÒ« ÓÈ }Èκä ÈË
¹¯ºË¯©ãÒÓˮӺº¯ÈmÓËÓÒ«°ºÓÒäÓËÒÏm˰Ó©äsÒÎË¹¯ÒmËËÓ¹¯Òä˯äÈ¯Ò
©¯ÈÏä˯È
)( mnnm
>×
ÒäËË®m˯²Ó¯ËºãÓÁº¯ä
mnmmmm
nmmmmmmm
nmmmm
nmmmm
nmmmm
aaa
aaaa
aaaaaa
aaaaaaa
aaaaaaaa
...00...000
...0...000
..............................
......00
......0
......
1,
,11,1,11,1
31,3,31,32,333
21,2,21,22,22322
11,1,11,12,1131211
+
+
+
+
+

zªãËäËÓȯөä¹¯Ëº¯ÈϺmÈÓÒ«ääÈ¯Ò©ºÓº°«°«
 ¹Ë¯Ë°ÈÓºm}È°¯º}¹Ë¯ËÓä˯ÈÒ«¯ÈmÓËÓÒ®
 ¹Ë¯Ë°ÈÓºm}È°ºãºmº°ÓºmÓº®äÈ¯Ò©¹Ë¯ËÓä˯ÈÒ«ÓËÒÏm˰Ó©²
 ÈãËÓÒË ÓãËmº® °¯º}Ò Ò°}ãËÓÒË ¯ÈmÓËÓÒ® ºÎ˰mËÓÓº ºmãË
mº¯«Ò²°«ã©äÒÏÓÈËÓÒ«äÒÓËÒÏm˰Ó©²
 äÓºÎËÓÒË°¯º}ÒÓÈÓËÓãËmºËÒ°ãºÓº¯äÒ¯ºmÈÓÒË¯ÈmÓËÓÒ®
 °ãºÎËÓÒË°¯º}Ò°ãÒÓˮӺ®}ºäÒÓÈÒË®º°ÈãÓ©²°¯º}°ÏȹҰ¯Ë
ÏãÈÈ ÓÈ ä˰º Ò°²ºÓº® °¯º}Ò ÏÈäËÓÈ ºÓºº ÒÏ ¯ÈmÓËÓÒ® °Ò°Ëä©
°ã˰mÒËäËË¯ÈmÓËÓÒ®¹ºãÈË䩲¹¯Ò¹ºäºÒãÒÓˮө²º¹Ë¯ÈÒ®
ËÓÒËÓ˺Ӻ¯ºÓº®°Ò°Ëä©¯ÈmÓËÓÒ®¯ÈmÓº}È}ÒËË¯ÈÓÓËÒÏäËÓÒ°«
È}ÎËÒ¹¯ÒÒ°¹ºãϺmÈÓÒÒãº®}ºäÒÓÈÒÒªãËäËÓȯө²º¹Ë¯ÈÒ®
s˹º°¯Ë°mËÓÓº®¹¯ºm˯}º® äºÎÓº ËÒ°«ºªãËäËÓȯөË ¹¯Ëº¯ÈϺ
mÈÓÒ« ãº® äÈ¯Ò© äº © m©¹ºãÓËÓ© ¹¯Ò ¹ºäºÒ äÓºÎËÓÒ« ËË ÓÈ äÈ¯Ò©
°ãË˺°¹ËÒÈãÓººmÒÈ
 ¹Ë¯Ë°ÈÓºm}È °¯º} ° Óºä˯ÈäÒ
i
Ò
j
äÈ¯Ò©
A
¯ÈÏä˯È
m
[
n
º°˰mã«Ë°« ¹Ëä ËË äÓºÎËÓÒ« °ãËmÈ ÓÈ äÈ¯Ò
S
1
¯ÈÏä˯È
m
[
m

}ºº¯È« m °mººË¯Ë ¹ºãÈË°« ÒÏ ËÒÓÒÓº® äÈ¯Ò©
E
¹Ëä
¹Ë¯Ë°ÈÓºm}Òm¹º°ãËÓË®
i
®Ò
j
®°¯º}
 äÓºÎËÓÒË
i
®°¯º}ÒäÈ¯Ò©
A
ÓÈÓË}ºº¯ºËÒ°ãº
λ
0
º°˰m
ã«Ë°« ¹Ëä äÓºÎËÓÒ«
A
°ãËmÈ ÓÈ äÈ¯Ò 
S
2
 }ºº¯È« ¹ºãÈË°«
 Ë }  Ò Ò    } È Á Ë  ¯ ©   m © °  Ë ®   ä È ˆ Ë ä È ˆ Ò } Ò   l n ‘ j 
ÙkÓÈã҈Ò˰}È«˺äˈ¯Ò«ÒãÒÓË®ÓÈ«ÈãË­¯ÈµäÓºmkp



          º ÙÓÈÒ­ºãËË ¹¯º°ˆ©äµ mÒºä ¯È° Ò¯ËÓÓº® äȈ¯Ò© ä© ­‚Ëä ¹ºÓÒäȈ 
kné}tíí zénymvstyí {véuy ˆË °ã‚È® }ºÈ α LM = 0  ¹¯Ò i > j  ã« }ºˆº¯º® mºÏ
äºÎÓº ¯Ë}‚¯¯ËӈӺË ÓȲºÎËÓÒË ÓËÒÏm˰ˆÓ©² ¹‚ˆËä ãÒ  ¯Ë ËÓÒ« ÓÈ }Èκä ÈË
¹¯ºË‚¯©ãÒÓˮӺº‚¯ÈmÓËÓÒ«°ºÓÒäÓËÒÏm˰ˆÓ©äsÒÎ˹¯ÒmËËÓ¹¯Òä˯äȈ¯Ò
©¯ÈÏä˯È m × n (n > m) ÒäË Ë®m˯²Ó                    ˆ¯Ë‚ºã ӂ Áº¯ä‚
          
          
                             a11   a12     a13 ... a1, m − 2            a1, m −1        a1, m        a1, m +1        ...        a1n
                             0     a22     a23 ... a2, m − 2            a2, m −1        a2 , m       a2, m +1        ...        a2 n
                             0      0      a33 ... a3, m − 2            a3, m −1        a3, m        a3, m +1        ...        a3n
                                                                                                                                         
                             ...    ...     ...    ...      ...            ...            ...           ...          ...   ...
                             0      0       0      ...      0         am −1, m −1 am −1, m         am −1, m +1       ... am −1, n
                             0      0       0      ...       0            0        amm              am, m +1         ... amn
       
       
       
zªãËäËӈȯө乯˺­¯ÈϺmÈÓÒ«ääȈ¯Ò©ºˆÓº°«ˆ°«
       
        ¹Ë¯Ë°ˆÈÓºm}Ȱˆ¯º} ¹Ë¯Ëӂä˯ÈÒ«‚¯ÈmÓËÓÒ® 
             ¹Ë¯Ë°ˆÈÓºm}Ȱˆºã­ºmº°ÓºmÓº®äȈ¯Ò© ¹Ë¯Ëӂä˯ÈÒ«ÓËÒÏm˰ˆÓ©² 
             ‚ÈãËÓÒË ӂãËmº® °ˆ¯º}Ò Ò°}ã ËÓÒË ‚¯ÈmÓËÓÒ® ˆºÎ˰ˆmËÓÓº ‚ºmãË
                ˆmº¯« Ò²°«ã ­©äÒÏÓÈËÓÒ«äÒÓËÒÏm˰ˆÓ©² 
             ‚äÓºÎËÓÒ˰ˆ¯º}ÒÓÈÓËӂãËmºËҰ㺠Ӻ¯äÒ¯ºmÈÓÒË‚¯ÈmÓËÓÒ® 
             °ãºÎËÓÒ˰ˆ¯º}Ò°ãÒÓˮӺ®}ºä­ÒÓÈÒË®º°ˆÈã Ó©²°ˆ¯º}°ÏȹҰ ¯Ë
                ς㠈ȈÈ ÓÈ ä˰ˆº Ò°²ºÓº® °ˆ¯º}Ò ÏÈäËÓÈ ºÓºº ÒÏ ‚¯ÈmÓËÓÒ® °Ò°ˆËä©
                °ã˰ˆmÒËäËË‚¯ÈmÓËÓÒ®¹ºã‚ÈË䩲¹¯Ò¹ºäºÒãÒÓˮө²º¹Ë¯ÈÒ® 
                         
        cË ËÓÒËÓ˺Óº¯ºÓº®°Ò°ˆËä©‚¯ÈmÓËÓÒ® ¯ÈmÓº}È}ÒË˯ÈÓ ÓËÒÏäËÓ҈°«
ˆÈ}ÎËÒ¹¯ÒÒ°¹ºã ϺmÈÓÒÒã ­º®}ºä­ÒÓÈÒÒªãËäËӈȯө²º¹Ë¯ÈÒ®
        
        
        s˹º°¯Ë°ˆmËÓÓº® ¹¯ºm˯}º® äºÎÓº ‚­Ë҈ °« ˆº ªãËäËӈȯөË ¹¯Ëº­¯ÈϺ
mÈÓÒ« ã ­º® äȈ¯Ò© 亂ˆ ­©ˆ  m©¹ºãÓËÓ© ¹¯Ò ¹ºäºÒ ‚äÓºÎËÓÒ« ËË ÓÈ äȈ¯Ò©
°ãË‚ Ëº°¹ËÒÈã ÓººmÒÈ
        
         ¹Ë¯Ë°ˆÈÓºm}È °ˆ¯º} ° Óºä˯ÈäÒ i Ò j äȈ¯Ò© A  ¯ÈÏä˯È m[n
                   º°‚Ë°ˆmã«Ëˆ°« ¹‚ˆËä ËË ‚äÓºÎËÓÒ« °ãËmÈ ÓÈ äȈ¯Ò‚ S                                             1
                                                                                                                                ¯ÈÏä˯È m[m
                   }ºˆº¯È« m °mº  º˯Ë  ¹ºã‚Èˈ°« ÒÏ ËÒÓÒÓº® äȈ¯Ò©                                                    E  ¹‚ˆËä
                ¹Ë¯Ë°ˆÈÓºm}Òm¹º°ãËÓË®i®Òj®°ˆ¯º}
            
             ‚äÓºÎËÓÒË i®°ˆ¯º}ÒäȈ¯Ò© A ÓÈÓË}ºˆº¯ºËҰ㺠λ ≠ 0 º°‚Ë°ˆm
                   ã«Ëˆ°« ¹‚ˆËä ‚äÓºÎËÓÒ« A  °ãËmÈ ÓÈ äȈ¯Ò‚ S                                        2
                                                                                                                   }ºˆº¯È« ¹ºã‚Èˈ°«