Аналитическая геометрия и линейная алгебра. Умнов А.Е. - 156 стр.

UptoLike

Составители: 

Рубрика: 


Ë} ÒÒ}ÈÁË ¯©m©° Ë®äÈËäÈÒ}Òlnj
ÙkÓÈãÒÒ˰}È«˺äË¯Ò«ÒãÒÓË®ÓÈ«ÈãË¯Èµ

äÓºmkp
¯ºÒãã°¯Ò¯Ëä ¹¯ÒäËÓËÓÒË äËºÈ È°°È ÓÈ ¹¯Òä˯Ë ¯ËËÓÒ« °ãËË®
°Ò°Ëä©ãÒÓˮө²¯ÈmÓËÓÒ®
ÈÈ
èn¡qzxqxznuyyéjktntqp

=+++
=+++
=+++
=++++
123345
23622
2323
7
54321
5432
54321
54321
ξ
ξ
ξ
ξ
ξ
ξ
ξ
ξ
ξ
ξ
ξ
ξ
ξ
ξ
ξ
ξ
ξ
ξ
ξ
ËÓÒË

°
vº°Èmã«Ëä¯È°Ò¯ËÓÓäÈ¯Ò°Ò°Ëä©
.
1213345
2362210
231123
711111
°
 ¯ÒmºÒäËË}m˯²ÓËä¯ËºãÓºämÒiã«ªºº
È ¹¯Ëº¯ÈÏËämÓ ãÒm°ËªãËäËÓ©¹Ë¯mºº°ºãÈ}¯ºäËªãËäËÓÈ°º«˺m
¹Ë¯mº®°¯º}Ësȹ¯Òä˯ã«ÏÈÓãËÓÒ«ªãËäËÓÈ°º«˺mºmº¯º®°¯º}Ë
¹Ë¯mºº °ºãÈ ÏÈäËÓÒä mº¯ °¯º} äÈ¯Ò© °¯º}º® }ºº¯È« «mã«Ë°«
°ä亮¹Ë¯mº®°¯º}ÒäÓºÎËÓÓº®ÓÈÒ mº¯º®°¯º}ÒkÓÈ㺠ÒÓº¹º
°¹ÈËä ° Ëm˯º® °¯º}º® ËË ÏÈäËÓ«Ëä ãÒÓˮӺ® }ºäÒÓÈÒË® ¹Ë¯mº® Ò
Ëm˯º® °¯º} ° }ºªÁÁÒÒËÓÈäÒ Ò  °ººmË°mËÓÓº ¯Ë ˰˰
mËÓÓºÓËäËÓ«ËäÈäÎËÒäËË°«Ó˺²ºÒä©®ã«¯ËºãÓººmÒÈÓºã{
ÒºËäÈ¯ÒÈ¹¯Òº¯ËÈËmÒ
2362210
2362210
2362210
711111

 m©¹ºãÓ«Ëä˹˯º¹Ë¯ÈÒÏÈÓãËÓÒ«ªãËäËÓºmmº¯ºº°ºãÈ°º«Ò²m
˺ ¯Ë Ë® Ò Ëm˯º® °¯º}Ȳiã« ªºº¯Ë °¯º}äÈ¯Ò © ÏÈäËÓ«Ëä
°ä亮mº¯º®Ò¯ËË®ÈËm˯¯ÈÏÓº°mº¯º®ÒËm˯º®º
ãÈËä
000000
000000
2362210
711111

 Ë }  Ò Ò    } È Á Ë  ¯ ©   m © °  Ë ®   ä È ˆ Ë ä È ˆ Ò } Ò   l n ‘ j 
ÙkÓÈã҈Ò˰}È«˺äˈ¯Ò«ÒãÒÓË®ÓÈ«ÈãË­¯ÈµäÓºmkp



          ¯ºÒãã °ˆ¯Ò¯‚Ëä ¹¯ÒäËÓËÓÒË äˈºÈ €È‚°°È ÓÈ ¹¯Òä˯Ë ¯Ë ËÓÒ« °ãË‚ Ë®
°Ò°ˆËä©ãÒÓˮө²‚¯ÈmÓËÓÒ®
          
~ÈÈÈèn¡qzxqxznuyyéjktntqp

          
                                         ξ1 + ξ 2              + ξ3          + ξ4            + ξ5         =  7
                                        3ξ + 2ξ                + ξ3          + ξ4            − 3ξ 5       = −2
                                         1        2
                                                                                                                     
                                               ξ2              + 2ξ 3        + 2ξ 4          + 6ξ 5       =     23
                                        5ξ1 + 4ξ 2            + 3ξ 3        + 3ξ 4          −    ξ5      =     12
            
cËËÓÒË

°vº°ˆÈmã«Ëä¯È° Ò¯ËÓӂ äȈ¯Ò‚°Ò°ˆËä©

                                                       1 1 1 1 1    7
                                                       3 2 1 1 −3 −2
                                                                      .
                                                       0 1 2 2 6 23
                                                       5 4 3 3 − 1 12

° ¯ÒmºÒäËË}m˯²ÓË䂈¯Ë‚ºã Óºä‚mÒ‚i㫪ˆºº

      È  ¹¯Ëº­¯ÈςËämӂãÒm°ËªãËäËӈ©¹Ë¯mºº°ˆºã­È}¯ºä˪ãËäËӈȰˆº«Ëºm
           ¹Ë¯mº®°ˆ¯º}Ësȹ¯Òä˯ã«ÏÈӂãËÓÒ«ªãËäËӈȰˆº«Ëºmºmˆº¯º®°ˆ¯º}Ë
           ¹Ë¯mºº °ˆºã­È ÏÈäËÓÒä mˆº¯‚  °ˆ¯º}‚ äȈ¯Ò© °ˆ¯º}º® }ºˆº¯È« «mã«Ëˆ°«
           °‚ä亮¹Ë¯mº®°ˆ¯º}Ò‚äÓºÎËÓÓº®ÓÈÒmˆº¯º®°ˆ¯º}ÒkÓÈ㺠ÒÓº¹º
           °ˆ‚¹ÈËä ° ˈm˯ˆº® °ˆ¯º}º® ËË ÏÈäËÓ«Ëä ãÒÓˮӺ® }ºä­ÒÓÈÒË® ¹Ë¯mº® Ò
           ˈm˯ˆº® °ˆ¯º} ° }ºªÁÁÒÒËӈÈäÒ  Ò  °ººˆmˈ°ˆmËÓÓº ‘¯Ëˆ  ˰ˆË°ˆ
           mËÓÓºÓËäËÓ«ËäˆÈä‚ÎËÒäËˈ°«Ó˺­²ºÒ䩮㫈¯Ë‚ºã ÓººmÒÈÓºã {
           ҈ºËäȈ¯Òȹ¯Òº­¯ËˆÈˈmÒ
   
                                                   1      1      1       1        1       7
                                                   0 − 1 − 2 − 2 − 6 − 23
                                                                          
                                                   0 1    2   2   6   23
                                                   0 − 1 − 2 − 2 − 6 − 23

        ­  m©¹ºãÓ«ËäˆË¹Ë¯ º¹Ë¯ÈÒ ÏÈӂãËÓÒ«ªãËäËӈºmmˆº¯ºº°ˆºã­È°ˆº«Ò²m
             ˺ ˆ¯Ëˆ Ë® Ò ˈm˯ˆº® °ˆ¯º}Ȳ iã« ªˆºº ˆ¯Ëˆ  °ˆ¯º}‚ äȈ¯Ò© ÏÈäËÓ«Ëä
             °‚ä亮mˆº¯º®Òˆ¯Ëˆ Ë®Èˈm˯ˆ‚ ¯ÈÏÓº°ˆ mˆº¯º®Òˈm˯ˆº®º
             ã‚ÈËä
                                                   1      1       1       1       1       7
                                                   0 − 1 − 2 − 2 − 6 − 23
                                                                          
                                                   0 0     0   0   0    0
                                                   0      0       0      0        0       0