Аналитическая геометрия и линейная алгебра. Умнов А.Е. - 157 стр.

UptoLike

Составители: 

Рубрика: 

cÈÏËã



vÒ°Ëä©ãÒÓˮө²¯ÈmÓËÓÒ®
m ¹º°}ºã} m ÈÓÓºä }ºÓ}¯ËÓºä °ãÈË ªãËäËÓ ¯È°¹ºãºÎËÓÓ©® m Ëm˯º®
°¯º}Ë ¯Ë˺ °ºãÈ º}ÈÏÈã°« ¯ÈmÓ©ä Ó ã º ¹¯ÒmËËÓÒË ¯È°Ò¯ËÓÓº®
äÈ¯Ò©}m˯²ÓËä¯ËºãÓºämÒÏÈm˯ËÓº
° ºãËÓÓÈ« äÈ¯ÒÈ «mã«Ë°« ¯È°Ò¯ËÓÓº® äÈ¯ÒË® °Ò°Ëä©ãÒÓˮө²¯ÈmÓË
ÓÒ® ¯ÈmÓº°ÒãÓº® Ò°²ºÓº® °Ò°ËäË cÈÓ ªº® äÈ¯Ò© °ºm¹ÈÈË ° ¯ÈÓºä Ò°
²ºÓº®|°ÈÏÈ}ãÈËäº
È °Ò°ËäÈ°ºmä˰ÓÈ ¹º°}ºã }¯ÈÓº°ÓºmÓº® äÈ¯Ò©¯ÈmËÓ¯ÈÓ¯È°Ò¯ËÓ
Óº®Ò¯ÈmËÓ2¹º˺¯ËäËz¯ºÓË}˯ÈzȹËããÒ
 ºÓº¯ºÓÈ« °Ò°ËäÈ ¯ÈmÓËÓÒ® Ë ÒäË ¹º ˺¯ËäË 
nA
−==
rg 5 2 3
ãÒÓˮӺÓËÏÈmÒ°Ò䩲¯ËËÓÒ«
°º°}ºã}ºËË¯ËËÓÒËÓ˺Ӻ¯ºÓº®°Ò°Ëä©˰ºËË¯ËËÓÒËºÓº¯ºÓº®
¹ã°ȰÓºË¯ËËÓÒËÓ˺Ӻ¯ºÓº®ºÓÈäº°ÈºÓºÓÈ®Ò¯Òã©²ãÒÓˮӺ
ÓËÏÈmÒ°Ò䩲¯ËËÓÒ«ºÓº¯ºÓº®°Ò°Ëä©Ò }È}ºËÓÒºÓº¯ËËÓÒËÓ˺
Óº¯ºÓº®
˯˹ÒËä Ò°²ºÓ °Ò°Ëä m ¹¯Ëº¯ÈϺmÈÓÓºä Ë ¹¯ÒÓ«m ¹Ë¯mºË Ò mº¯ºË
ÓËÒÏm˰Ó©ËÏÈº°ÓºmÓ©ËÈ¯ËËËm˯ºËÒ¹«ºËÏÈ°mººÓ©Ë

=
=+
5432
54321
62223
7
ξ
ξ
ξ
ξ
ξ
ξ
ξ
ξ
ξ

{º¯ºË ¯ÈmÓËÓÒË ã« º°mÈ Ò°ãËÓÒ® äÓºÎÒäÓÈÈ ¯ËË Ò Ëm˯ºË
¯ÈmÓËÓÒ«º¯º°Òä}È}ºmãËmº¯«Ò˰«ºÎ˰mËÓÓº
ºãºÎÒmm°Ò°ËäË°mººÓ©ËÓËÒÏm˰Ó©Ë¯ÈmÓ©äÒÓã ÓȲºÒäȰÓºË
¯ËËÓÒË Ó˺Ӻ¯ºÓº® °Ò°Ëä©
0
0
0
23
16
 ~ÓÈËÓÒ« º°ÓºmÓ©² ÓËÒÏm˰Ó©² º¹¯ËË
ã«°«ÒÏãË}º¯ËÈË亮°Ò°Ëä©ãÒÓˮө²¯ÈmÓËÓÒ®
=
=+
23
7
2
21
ξ
ξ
ξ

iã«ºÓº¯ºÓº®°Ò°Ëä©
=
=+
5432
54321
622
ξ
ξ
ξ
ξ
ξ
ξ
ξ
ξ
ξ
cÈÏËã
vÒ°ˆËä©ãÒÓˮө²‚¯ÈmÓËÓÒ®



         m  ¹º°}ºã }‚ m ÈÓÓºä }ºÓ}¯ËˆÓºä °ã‚ÈË ªãËäËӈ ¯È°¹ºãºÎËÓÓ©® m ˈm˯ˆº®
              °ˆ¯º}Ë ˆ¯Ëˆ ˺ °ˆºã­È º}ÈÏÈã°« ¯ÈmÓ©ä ӂã  ˆº ¹¯ÒmËËÓÒË ¯È° Ò¯ËÓÓº®
              äȈ¯Ò©}m˯²ÓË䂈¯Ë‚ºã Óºä‚mÒ‚ÏÈm˯ ËÓº

°ºã‚ËÓÓÈ« äȈ¯ÒÈ «mã«Ëˆ°« ¯È° Ò¯ËÓÓº® äȈ¯ÒË® °Ò°ˆËä© ãÒÓˮө² ‚¯ÈmÓË
     ÓÒ® ¯ÈmÓº°Òã Óº® Ò°²ºÓº® °Ò°ˆËäË cÈÓ ªˆº® äȈ¯Ò© °ºm¹ÈÈˈ ° ¯ÈÓºä Ò°
     ²ºÓº®|ˆ° ÈÏÈ}ã ÈË䈺

      È  °Ò°ˆËäȰºmä˰ˆÓȹº°}ºã }‚¯ÈÓº°ÓºmÓº®äȈ¯Ò©¯ÈmËÓ¯ÈÓ‚¯È° Ò¯ËÓ
           Óº®Ò¯ÈmËÓ2 ¹ºˆËº¯ËäËz¯ºÓË}˯ÈzȹËããÒ 
      
      ­  ºÓº¯ºÓÈ« °Ò°ˆËäÈ ‚¯ÈmÓËÓÒ® ­‚ˈ Òäˈ  ¹º ˆËº¯ËäË 
             n − rg A = 5 − 2 = 3 ãÒÓˮӺÓËÏÈmÒ°Ò䩲¯Ë ËÓÒ«


°º°}ºã }‚º­ËË¯Ë ËÓÒËÓ˺Óº¯ºÓº®°Ò°ˆËä©˰ˆ º­ËË¯Ë ËÓÒ˺Ӻ¯ºÓº®
     ¹ã °ȰˆÓºË¯Ë ËÓÒËÓ˺Óº¯ºÓº®ˆºÓÈ亰ˆÈˆºÓºÓÈ®ˆÒˆ¯Òã ­©²ãÒÓˮӺ
     ÓËÏÈmÒ°Ò䩲 ¯Ë ËÓÒ« ºÓº¯ºÓº® °Ò°ˆËä© Ò }È}ºËÓÒ­‚  ºÓº ¯Ë ËÓÒË Ó˺
     Óº¯ºÓº®
     
     
     Ë¯Ë¹Ò Ëä Ò°²ºӂ  °Ò°ˆËä‚ m ¹¯Ëº­¯ÈϺmÈÓÓºä mÒË ¹¯ÒÓ«m ¹Ë¯mºË Ò mˆº¯ºË
     ÓËÒÏm˰ˆÓ©ËÏȺ°ÓºmÓ©ËȈ¯Ëˆ Ëˈm˯ˆºËÒ¹«ˆºËÏȰmº­ºÓ©Ë
     
                               ξ1 + ξ 2        = 7 − ξ3               − ξ4       − ξ5
                                                           
                                    ξ2         = 23 − 2ξ 3            − 2ξ 4     − 6ξ 5
     
     {ˆº¯ºË ‚¯ÈmÓËÓÒË ã« ‚º­°ˆmÈ m©Ò°ãËÓÒ® ‚äÓºÎÒä ÓÈ  È ˆ¯Ëˆ Ë Ò ˈm˯ˆºË
     ‚¯ÈmÓËÓÒ«ºˆ­¯º°Òä}È}‚ºmãˈmº¯« Ò˰«ˆºÎ˰ˆmËÓÓº
     
     ºãºÎÒmm°Ò°ˆËäË  °mº­ºÓ©ËÓËÒÏm˰ˆÓ©Ë¯ÈmÓ©äÒӂã ÓȲºÒäȰˆÓºË
                                                       − 16
                                                        23
     ¯Ë ËÓÒË Ó˺Óº¯ºÓº® °Ò°ˆËä©                     0  ~ÓÈËÓÒ« º°ÓºmÓ©² ÓËÒÏm˰ˆÓ©² º¹¯ËË
                                                         0
                                                         0
     ã« ˆ°«ÒÏãË}º¯Ë ÈË亮°Ò°ˆËä©ãÒÓˮө²‚¯ÈmÓËÓÒ®
     
                                                  ξ1 + ξ 2 = 7
                                                               
                                                      ξ 2 = 23
     
     
     i㫺Ӻ¯ºÓº®°Ò°ˆËä©
     
                                    ξ1   + ξ2     =          − ξ3      − ξ4        − ξ5
                                                                                          
                                           ξ2     =          − 2ξ 3    − 2ξ 4      − 6ξ 5