Аналитическая геометрия и линейная алгебра. Умнов А.Е. - 159 стр.

UptoLike

Составители: 

Рубрика: 

cÈÏ Ëã
163
ÒÓˮӺË¹¯º°¯ÈÓ°mº
cÈÏËã
jspqs|pc|vcksv{|
|¹¯ËËãËÓÒËãÒÓˮӺº¹¯º°¯ÈÓ°mÈ
|¹¯ËËãËÓÒË

lÓºÎ˰mº
Λ
°º°º«ËË ÒÏ ªãËäËÓºm
,,, zyx
ÓÈÏ©mÈË°« sqtnptu
wévxzéjtxzkvu˰ãÒ
° zÈκ® ¹È¯Ë ªãËäËÓºm
yx
,
ªºº äÓºÎ˰mÈ ¹º°ÈmãËÓ m
°ººmË°mÒË ¯ËÒ® ªãËäËÓ ªºº ÎË äÓºÎ˰mÈ ÓÈÏ©mÈËä©® Ò²
xyuuvpÒººÏÓÈÈËä©®
yx +
È}Òäº¯ÈϺäºm©¹ºãÓËÓ©È}
°Òºä©
È
xyyx +=+


zyxzyx
++=++
)()(

m °˰mË tysnkvp ësnuntz
o
È}º®º ã« ãºº
Λx
ÒäËËä˰º
xox =+

 ã« }Èκº
x
°˰mË wévzqkvwvsvtp ësnuntz
)(
x
È}º®º
oxx =+
)(

° iã«ãººªãËäËÓÈ
x
ÒãººÒ°ãÈ
λ
°˰mËÈ}º®¹¯Ò
ÓÈãËÎÈÒ®
Λ
ªãËäËÓººÏÓÈÈËä©®
x
λ
ÒÓÈÏ©mÈËä©®wévqokn
lntqnu·qxsjtjësnuntzºm©¹ºãÓËÓ©È}°Òºä©
È
xx
=
1


xx )()(
λµµλ
=
° iã«º¹Ë¯ÈÒ®°ãºÎËÓÒ«ªãËäËÓºmÒäÓºÎËÓÒ«ªãËäËÓÈÓÈÒ°ãº
m©¹ºãÓËÓ©È}°Òºä©Ò°¯ÒÒmÓº°Ò
È
xxx
µλµλ
+=+
)(


;,;)(
Λ+=+
yxyxyx
λλλ
Òã«ã©² Ò°Ëã
µλ
,

~ÈäËÈÓÒ«

° ºÙÒ°ãÈäÒµ mÈ}°ÒºäȲ mº¯º®Ò ¯ËË® ¯¹¹¹º¯ÈÏäËmÈ°«
Ë®°mÒËãÓ©ËÒãÒ}ºä¹ãË}°Ó©ËÒ°ãÈ
c È Ï  Ë ã                                                      163
ÒÓˮӺ˹¯º°ˆ¯ÈÓ°ˆmº



                  
                  
                  
                  
                  
                  
                  
cÈÏËã
jspqs|pc|v‘cksv‘{|
                  
                  
                  
                  
                  
|¹¯ËËãËÓÒËãÒÓˮӺº¹¯º°ˆ¯ÈÓ°ˆmÈ
                  
                  
                  
                  
                                   
    |¹¯ËËãËÓÒË                   lÓºÎ˰ˆmº Λ °º°ˆº«ËË ÒÏ ªãËäËӈºm x, y , z , ÓÈÏ©mÈˈ°« sqtnpt€u
    
                                   wévxzéjtxzkvu˰ãÒ
                                   
                                   ° zÈκ® ¹È¯Ë ªãËäËӈºm x, y  ªˆºº äÓºÎ˰ˆmÈ ¹º°ˆÈmãËÓ m
                                         °ººˆmˈ°ˆmÒË ˆ¯ËˆÒ® ªãËäËӈ ªˆºº ÎË äÓºÎ˰ˆmÈ ÓÈÏ©mÈËä©® Ò²
                                         xyuuvpÒº­ºÏÓÈÈËä©® x + y ˆÈ}Ò亭¯ÈϺ䈺m©¹ºãÓËÓ©È}
                                         °Òºä© È  x + y = y + x 
                                                ­  x + ( y + z ) = ( x + y ) + z 
                                                m  °‚Ë°ˆm‚ˈ tysnkvp ësnuntz o  ˆÈ}º® ˆº ã« ã ­ºº
                                                    x ∈ Λ ÒäËˈä˰ˆº x + o = x 
                                                  ã« }Èκº x  °‚Ë°ˆm‚ˈ wévzqkvwvsv t€p ësnuntz
                                                    (− x ) ˆÈ}º®ˆº x + (− x ) = o 
                                   
                                   ° iã«ã ­ººªãËäËӈÈ x Òã ­ººÒ°ãÈ λ °‚Ë°ˆm‚ˈˆÈ}º®¹¯Ò
                                         ÓÈãËÎȝҮ Λ ªãËäËӈº­ºÏÓÈÈËä©® λx ÒÓÈÏ©mÈËä©®wévqokn
                                         lntqnu·qxsjtjësnuntzˆºm©¹ºãÓËÓ©È}°Òºä©
                                                È  1x = x 
                                                ­  λ ( µx ) = (λµ ) x 
                                   
                                   ° i㫺¹Ë¯ÈÒ®°ãºÎËÓÒ«ªãËäËӈºmÒ‚äÓºÎËÓÒ«ªãËäËӈÈÓÈÒ°ãº
                                         m©¹ºãÓËÓ©È}°Òºä©Ò°ˆ¯Ò­‚ˆÒmÓº°ˆÒ
                                                È  (λ + µ ) x = λx + µx 
                                                ­  λ ( x + y ) = λx + λy ; ∀x, y ∈ Λ ; Òã«ã ­©² Ò°Ëã λ , µ 
                                                
                  
                  
~ÈäËÈÓÒ«°                         º ÙÒ°ãÈäÒµ m È}°ÒºäȲ mˆº¯º® Ò ˆ¯Ëˆ Ë® ¯‚¹¹ ¹º¯ÈςäËmÈ ˆ°«
                                          Ë®°ˆm҈Ëã Ó©ËÒãÒ}ºä¹ãË}°Ó©ËÒ°ãÈ