Аналитическая геометрия и линейная алгебра. Умнов А.Е. - 161 стр.

UptoLike

Составители: 

Рубрика: 

cÈÏ Ëã
165
ÒÓˮӺË¹¯º°¯ÈÓ°mº
˺¯ËäÈ

ÒÓˮӺË¹¯º°¯ÈÓ°mºÒäËËËÒÓ°mËÓÓ©®ÓãËmº®ªãËäËÓ
iº}ÈÏÈËã°mº
° °˰m mÈ ¯ÈÏãÒÓ©² ÓãËm©² ªãËäËÓÈ
1
o
Ò
2
o
 ºÈ °ºãȰӺ
È}°ÒºäË¹°mÒÏº¹¯ËËãËÓÒ«ãÒÓˮӺº¹¯º°¯ÈÓ°mÈ°¹¯ÈmËãÒ
m©¯ÈmËÓ°mÈ
oo o
12 1
+=
Ò
212
ooo
=+

|}Èm°Òã}ºääÈÒmÓº°Òº¹Ë¯ÈÒÒ°ãºÎËÓÒ«¹ºãÈËä
oo
12
=

˺¯ËäÈº}ÈÏÈÓÈ
˺¯ËäÈ

iã«}ÈκºªãËäËÓ È
x
ãÒÓˮӺº¹¯º°¯ÈÓ°mÈÒäËËä˰º¯ÈmËÓ
°mº
0xo=
iº}ÈÏÈËã°mº
jÏÈ}°ÒºäÈÒ}ÒãÒÓˮӺº¹¯º°¯ÈÓ°mÈÒäËËä
xx xxx xx==(+)= + = +101010 .
¯ÒÈmã«« } ºËÒä Ȱ«ä ªºº ¯ÈmËÓ°mÈ ªãËäËÓ
y
¹¯ºÒmº¹ºãºÎÓ©® ªãË
äËÓ
[
¹ºãÈËäº
0xo=

˺¯ËäÈº}ÈÏÈÓÈ
˺¯ËäÈ

iã« }Èκº ªãËäËÓÈ ãÒÓˮӺº ¹¯º°¯ÈÓ°mÈ °˰mË ËÒÓ°
mËÓÓ©®¹¯ºÒmº¹ºãºÎÓ©®ªãËäËÓ
iº}ÈÏÈËã°mº
°ã«ªãËäËÓÈ
x °˰mmÈ¯ÈÏãÒÓ©²¹¯ºÒmº¹ºãºÎÓ©²ªãËäËÓÈ
1
y
Ò
2
y
ºÈ°ºãȰӺÈ}°ÒºäË°ãÒÓˮӺº¹¯º°¯ÈÓ°mÈ°¹¯ÈmËãÒm©
¯ÈmËÓ°mÈ
xy o
+=
1
Ò
xy o
+=
2

¯ÒÈmÒä}ººÒäȰ«ä¹Ë¯mºº¯ÈmËÓ°mÈªãËäËÓ
y
2
¹ºãÒä
yxyy
212
++ =
()
m °Òã Ȱ°ºÒÈÒmÓº°Ò º¹Ë¯ÈÒÒ °ãºÎËÓÒ« Ò mº¯ºº ¯ÈmËÓ°mÈ sº ° ¯º®
°º¯ºÓ©
yxy yxyoyy
212111
++ = ++=+=
()()
º˰
yy
21
=

˺¯ËäÈº}ÈÏÈÓÈ

c È Ï  Ë ã                                                      165
ÒÓˮӺ˹¯º°ˆ¯ÈÓ°ˆmº



    ‘˺¯ËäÈ                       ÒÓˮӺ˹¯º°ˆ¯ÈÓ°ˆmºÒäËˈËÒÓ°ˆmËÓÓ©®ӂãËmº®ªãËäËӈ
    
                   
       iº}ÈÏȈËã°ˆmº
            
            ‚°ˆ  °‚Ë°ˆm‚ ˆ mÈ ¯ÈÏãÒÓ©² ӂãËm©² ªãËäËӈÈ o1  Ò o2  ‘ºÈ °ºãȰӺ
            È}°Òºä˹° m ÒϺ¹¯ËËãËÓÒ«ãÒÓˮӺº¹¯º°ˆ¯ÈÓ°ˆmÈ­‚‚ˆ°¹¯ÈmËãÒ
            m©¯ÈmËÓ°ˆmÈ
                                        o1 + o2 = o1 Ò o2 + o1 = o2 
                                                       
            |ˆ}‚Èm°Òã‚}ºä䂈ȈÒmÓº°ˆÒº¹Ë¯ÈÒÒ°ãºÎËÓÒ«¹ºã‚ÈËä o1 = o 2 
            
         ‘˺¯ËäȺ}ÈÏÈÓÈ
              
              
                   

    ‘˺¯ËäÈ                       iã«}ÈκºªãËäËÓˆÈ xãÒÓˮӺº¹¯º°ˆ¯ÈÓ°ˆmÈÒäËˈä˰ˆº¯ÈmËÓ
                            °ˆmº 0x = o 
           
     iº}ÈÏȈËã°ˆmº
      
         jÏÈ}°ÒºäȈÒ}ÒãÒÓˮӺº¹¯º°ˆ¯ÈÓ°ˆmÈÒäËËä
         
                                                                       x = 1x = (0 + 1) x = 0 x + 1x = 0 x + x . 
               
               ¯Ò­Èmã«« } º­ËÒä Ȱˆ«ä ªˆºº ¯ÈmËÓ°ˆmÈ ªãËäËӈ y ¹¯ºˆÒmº¹ºãºÎÓ©® ªãË
               äËӈ‚[¹ºã‚ÈË䈺 0x = o 
               
       ‘˺¯ËäȺ}ÈÏÈÓÈ
                   
                   
                   

    ‘˺¯ËäÈ                       iã« }Èκº ªãËäËӈÈ ãÒÓˮӺº ¹¯º°ˆ¯ÈÓ°ˆmÈ °‚Ë°ˆm‚ˈ ËÒÓ°ˆ
                            mËÓÓ©®¹¯ºˆÒmº¹ºãºÎÓ©®ªãËäËӈ
           
     iº}ÈÏȈËã°ˆmº
         
         ‚°ˆ 㫪ãËäËӈÈ x °‚Ë°ˆm‚ ˆmȯÈÏãÒÓ©²¹¯ºˆÒmº¹ºãºÎÓ©²ªãËäËӈÈ y1 
               Ò y 2 ‘ºÈ°ºãȰӺÈ}°Òºä˰  ãÒÓˮӺº¹¯º°ˆ¯ÈÓ°ˆmÈ­‚‚ˆ°¹¯ÈmËãÒm©
               ¯ÈmËÓ°ˆmÈ
                                              x + y1 = o Ò x + y 2 = o 
               
               ¯Ò­ÈmÒä}º­ºÒäȰˆ«ä¹Ë¯mºº¯ÈmËÓ°ˆmȪãËäËӈ y 2 ¹ºã‚Òä
               
                                                                                          y 2 + ( x + y1 ) = y 2 
                                                                                                     
          m °Òã‚ Ȱ°ºÒȈÒmÓº°ˆÒ º¹Ë¯ÈÒÒ °ãºÎËÓÒ« Ò mˆº¯ºº ¯ÈmËÓ°ˆmÈ sº ° ¯‚º®
          °ˆº¯ºÓ© y 2 + ( x + y1 ) = ( y 2 + x ) + y1 = o + y1 = y1 ‘º˰ˆ  y 2 = y1 
          
       ‘˺¯ËäȺ}ÈÏÈÓÈ