Аналитическая геометрия и линейная алгебра. Умнов А.Е. - 163 стр.

UptoLike

Составители: 

Рубрика: 

cÈÏ Ëã
167
ÒÓˮӺË¹¯º°¯ÈÓ°mº
ËääÈ


p°ãÒ ÓË}ºº¯ºË ¹ºäÓºÎ˰mº ªãËäËÓºm
xx x
n12
, ,...,
ãÒÓˮӺ ÏÈmÒ
°ÒäººãÒÓˮӺÏÈmÒ°Òä©Ò°ÈäÒªãËäËÓ©
xx x
n12
, ,...,
iº}ÈÏÈËã°mº
rËÏº¯ÈÓÒËÓÒ«ºÓº°ÒäºÎÓº¹¯Ë¹ºãºÎÒºãÒÓˮӺÏÈmÒ°ÒäºË¹º
äÓºÎ˰mº °º°ºÒ Ò² ¹Ë¯m©²
nk <
ªãËäËÓºm äÓºÎ˰mÈ
xx x
n12
, ,...,
 ºÈ
°˰m ÓË ¯ÈmÓ©Ë ÓãºÓºm¯ËäËÓÓº Ò°ãÈ
λλ λ
12
, ,...,
k
È}ÒË º
λ
ii
i
k
xo
=
=
1
 sº ÒÏ ªºº °ººÓºËÓÒ« m©Ë}ÈË ¯ÈmËÓ°mº
λ
ii
i
k
i
ik
n
xxo
==+
∑∑
+=
11
0

}ºº¯ºËºÏÓÈÈËãÒÓË®ÓÏÈmÒ°Ò亰ªãËäËÓºm
xx x
n12
, ,...,

ËääÈº}ÈÏÈÓÈ
|¹¯ËËãËÓÒË

ÈjoqxvumãÒÓˮӺä¹¯º°¯ÈÓ°mË
Λ
ÓÈÏ©Ë°«ãº®¹º¯«ºËÓÓ©®
ÓÈº¯˺
n
ªãËäËÓºm˰ãÒ
°
 ªÒªãËäËÓ©ãÒÓˮӺÓËÏÈmÒ°Òä©Ë
°
 ãºË ¹ºäÓºÎ˰mº m
Λ
 °º°º«ËË ÒÏ
n
+1
ªãËäËÓÈ Ò
m}ãÈËËªÒ
n
ªãËäËÓºmãÒÓˮӺÏÈmÒ°Òäº
|¹¯ËËãËÓÒË

ÒÓˮӺË ¹¯º°¯ÈÓ°mº
Λ
ÓÈÏ©mÈË°«
n
unétu Ò ººÏÓÈÈË°«
n
Λ

˰ãÒmÓËä°˰mËÈÏÒ°°º°º«Ò®ÒÏ
n
ªãËäËÓºmÒ°ãº
n
ÓÈ
Ï©mÈË°« éjounétvxzíãÒÓˮӺº ¹¯º°¯ÈÓ°mÈ
n
Λ
ÒººÏÓÈÈË°«
)dim(
n
Λ

˺¯ËäÈ

iã«}ÈκºªãËäËÓÈãÒÓˮӺº¹¯º°¯ÈÓ°mÈ
n
Λ
°˰mËËÒÓ
°mËÓÓºË¹¯Ë°ÈmãËÓÒËmmÒËãÒÓˮӺ®}ºäÒÓÈÒÒÈÏÒ°Ó©²ªãË
äËÓºm
iº}ÈÏÈËã°mº
°mãÒÓˮӺä¹¯º°¯ÈÓ°mË
Λ
n
ÏÈÈÓ©ÈÏÒ°
{, ,..., }
gg g
n
12
Ò¹¯ºÒÏmºãÓ©®
ªãËäËÓ
x

ºÈ ¹º º¹¯ËËãËÓÒ ÈÏÒ°È °Ò°ËäÈ ªãËäËÓºm
{, ,..., ,}
gg gx
n
12
ãÒÓˮӺ ÏÈmÒ°ÒäÈ Ò ¹º ãËääË  ªãËäËÓ
x
«mã«Ë°« ãÒÓˮӺ® }ºäÒÓÈÒË®
ªãËäËÓºm
gg g
n
12
,,...,
v˰mºmÈÓÒË¯ÈÏãºÎËÓÒ«º}ÈÏÈÓº
º}ÈÎËäËÒÓ°mËÓÓº°¯ÈÏãºÎËÓÒ«iº¹°Òäº°˰mmË¯ÈÏãÒÓ©Ë
ãÒÓˮөË }ºäÒÓÈÒÒ
xg
ii
i
n
=
=
ξ
1
Ò
xg
ii
i
n
=
=
η
1
 ºÈ ¹ºãÈËä º
()
ξ
η
iii
i
n
go−=
=
1
ÓºªººÏÓÈÈËº¹¯ÒÈÓÓºäº¹ËÓÒÒ°Ò°ËäÈªãËäËÓ
ºm
gg g
n12
,,...,
ãÒÓˮӺÏÈmÒ°ÒäÈºãËÓÓºË¹¯ºÒmº¯ËÒËº}ÈÏ©mÈËËÒÓ
°mËÓÓº°
˺¯ËäÈº}ÈÏÈÓÈ

c È Ï  Ë ã                                                      167
ÒÓˮӺ˹¯º°ˆ¯ÈÓ°ˆmº



    ËääÈ                         p°ãÒ ÓË}ºˆº¯ºË ¹ºäÓºÎ˰ˆmº ªãËäËӈºm x1 , x 2 ,... , x n  ãÒÓˮӺ ÏÈmÒ
                            °Ò予ºãÒÓˮӺÏÈmÒ°Òä©Ò°ÈäÒªãËäËӈ© x1 , x 2 ,... , x n 
     iº}ÈÏȈËã°ˆmº
      
         rËϺ¯ÈÓÒËÓÒ«º­Óº°ˆÒäºÎÓº¹¯Ë¹ºãºÎ҈ ˆºãÒÓˮӺÏÈmÒ°ÒäºË¹º
         äÓºÎ˰ˆmº °º°ˆºÒˆ Ò² ¹Ë¯m©² k < n  ªãËäËӈºm äÓºÎ˰ˆmÈ x1 , x 2 ,... , x n  ‘ºÈ
         °‚Ë°ˆm‚ ˆ ÓË ¯ÈmÓ©Ë ӂã  ºÓºm¯ËäËÓÓº Ò°ãÈ λ1 , λ2 ,..., λk  ˆÈ}ÒË ˆº
                    k                                                                                                                                           k                    n
                   ∑ λi xi = o  sº ÒÏ ªˆºº °ººˆÓº                                        ËÓÒ« m©ˆË}Èˈ ¯ÈmËÓ°ˆmº                                     ∑ λi xi + ∑ 0 xi = o 
                   i =1                                                                                                                                       i =1                i = k +1
               }ºˆº¯ºËºÏÓÈÈˈãÒÓˮӂ ÏÈmÒ°Ò亰ˆ ªãËäËӈºm x1 , x 2 ,... , x n 
       
       ËääȺ}ÈÏÈÓÈ
                   
    |¹¯ËËãËÓÒË                    ÈjoqxvumãÒÓˮӺ乯º°ˆ¯ÈÓ°ˆmË Λ ÓÈÏ©mÈˈ°«ã ­º®‚¹º¯«ºËÓÓ©®
                             ÓÈ­º¯ËºnªãËäËӈºm˰ãÒ
                                    

                                                ° ªˆÒªãËäËӈ©ãÒÓˮӺÓËÏÈmÒ°Òä©Ë
                                                ° ã ­ºË ¹ºäÓºÎ˰ˆmº m Λ  °º°ˆº«ËË ÒÏ n+1 ªãËäËӈÈ Ò
                                                      m}ã È Ë˪ˆÒnªãËäËӈºmãÒÓˮӺÏÈmÒ°Òäº
                   
    |¹¯ËËãËÓÒË                   ÒÓˮӺË ¹¯º°ˆ¯ÈÓ°ˆmº Λ  ÓÈÏ©mÈˈ°« nunét€u Ò º­ºÏÓÈÈˈ°« Λn 
    
                                   ˰ãÒmÓËä°‚Ë°ˆm‚ˈ­ÈÏÒ°°º°ˆº«Ò®ÒÏ nªãËäËӈºm Ұ㺠nÓÈ
                                   Ï©mÈˈ°« éjounétvxzí ãÒÓˮӺº ¹¯º°ˆ¯ÈÓ°ˆmÈ Λn  Ò º­ºÏÓÈÈˈ°«
                                    dim( Λn ) 
                   
                   

    ‘˺¯ËäÈ                       iã«}ÈκºªãËäËӈÈãÒÓˮӺº¹¯º°ˆ¯ÈÓ°ˆmÈ  Λn °‚Ë°ˆm‚ˈËÒÓ
    
                                   °ˆmËÓӺ˹¯Ë°ˆÈmãËÓÒËmmÒËãÒÓˮӺ®}ºä­ÒÓÈÒÒ­ÈÏÒ°Ó©²ªãË
                                   äËӈºm
                   

     iº}ÈÏȈËã°ˆmº
               

               ‚°ˆ mãÒÓˮӺ乯º°ˆ¯ÈÓ°ˆmËΛ n ÏÈÈÓ©­ÈÏÒ° {g1 , g 2 ,..., g n } Ò¹¯ºÒÏmºã Ó©®
               ªãËäËӈ x ‘ºÈ ¹º º¹¯ËËãËÓÒ  ­ÈÏÒ°È °Ò°ˆËäÈ ªãËäËӈºm {g1 , g 2 ,..., g n , x} 
               ãÒÓˮӺ ÏÈmÒ°ÒäÈ Ò ¹º ãËääË  ªãËäËӈ x «mã«Ëˆ°« ãÒÓˮӺ® }ºä­ÒÓÈÒË®
               ªãËäËӈºm g1 , g 2 ,..., g n v‚Ë°ˆmºmÈÓÒ˯ÈÏãºÎËÓÒ«º}ÈÏÈÓº
               
               º}ÈÎËäËÒÓ°ˆmËÓÓº°ˆ ¯ÈÏãºÎËÓÒ«iº¹‚°ˆÒ䈺°‚Ë°ˆm‚ ˆm˯ÈÏãÒÓ©Ë
                                                                                        n                                       n
               ãÒÓˮөË }ºä­ÒÓÈÒÒ                                          x = ∑ ξ i g i  Ò                      x = ∑ η i g i  ‘ºÈ ¹ºã‚ÈËä ˆº
                                                                                      i =1                                    i =1
                    n
                   ∑ (ξi − η i ) gi = o ÓºªˆººÏÓÈÈˈˆº¹¯ÒÈÓӺ亹‚ËÓÒÒ°Ò°ˆËäȪãËäËÓ
                   i =1
               ˆºm g1 , g 2 ,..., g n ãÒÓˮӺÏÈmÒ°Òäȁºã‚ËÓӺ˹¯ºˆÒmº¯ËÒ˺}ÈÏ©mÈˈËÒÓ
               °ˆmËÓÓº°ˆ 
       
       ‘˺¯ËäȺ}ÈÏÈÓÈ