Аналитическая геометрия и линейная алгебра. Умнов А.Е. - 165 стр.

UptoLike

Составители: 

Рубрика: 

cÈÏ Ëã
169
ÒÓˮӺË¹¯º°¯ÈÓ°mº
|¹Ë¯ÈÒÒ°ªãËäËÓÈäÒãÒÓˮӺº¹¯º°¯ÈÓ°mÈ
m}ºº¯ÒÓÈÓºä¹¯Ë°ÈmãËÓÒÒ
|¹¯ËËãËÓÒË

zºªÁÁÒÒËÓ©
n
ξ
ξ
ξ
,...,,
21
¯ÈÏãºÎËÓÒ«
=
=
n
i
ii
gx
1
ξ
ÓÈÏ©mÈ°«rvvélq
tjzjuq ÒãÒ rvuwvtntzjuq ªãËäËÓÈ
[
ãÒÓˮӺº ¹¯º°¯ÈÓ°mÈ
n
Λ
m
ÈÏÒ°Ë
},...,,{
21
n
ggg

~ÈäËÒäºm°Òã˺¯Ëä©ªãËäËÓãÒÓˮӺº¹¯º°¯ÈÓ°mÈ
n
Λ
mÈÏÒ°Ë
{, ,..., }
gg g
n
12
ºÓºÏÓÈÓº¹¯Ë°Èmã«Ë°«
n
}ºä¹ºÓËÓÓ©ä°ºãºä
n
ξ
ξ
ξ
...
2
1

° m }ºÓ}¯ËÓºä ÈÏÒ°Ë
xg
ii
i
n
=
=
ξ
1
Ò
yg
ii
i
n
=
=
η
1
 ºÈ ÒÏ º¹¯ËËãËÓÒ«
ÈÏÒ°ÈÒÈ}°ÒºäãÒÓˮӺº¹¯º°¯ÈÓ°mÈ°ãË¹¯ÈmÒãÈm©¹ºãÓËÓÒ«º¹Ë¯ÈÒ®°˺
ªãËäËÓÈäÒm}ºº¯ÒÓÈÓº®Áº¯äË
°

v¯ÈmÓËÓÒË
mÈªãËäËÓÈm
n
Λ
¯ÈmÓ©ºÈÒºã}ººÈ}ºÈ

ξ
η
ii
i
n
ii
i
n
gxy g
==
∑∑
===
11
ÒãÒm}ºº¯ÒÓÈÓº®Áº¯äË
=
=
=
nn
η
ξ
η
ξ
η
...
22
11

°

vãºÎËÓÒË


xy g
iii
i
n
+= +
=
()
ξ
η
1
ÒãÒmäÈ¯ÒÓº®Áº¯äË
nnnn
η
ξ
η
ξ
η
ξ
η
η
η
ξ
ξ
ξ
+
+
+
=+
.........
22
11
2
1
2
1

°

äÓºÎËÓÒËÓÈÒ°ãº


λλ
ξ
λ
ξ
xg g
ii
i
n
i
i
n
i
==
==
∑∑
11
()
ÒãÒmäÈ¯ÒÓº®Áº¯äË
nn
λ
ξ
λ
ξ
λ
ξ
ξ
ξ
ξ
λ
......
2
1
2
1
=

c È Ï  Ë ã                                                      169
ÒÓˮӺ˹¯º°ˆ¯ÈÓ°ˆmº



|¹Ë¯ÈÒÒ°ªãËäËӈÈäÒãÒÓˮӺº¹¯º°ˆ¯ÈÓ°ˆmÈ
      m}ºº¯ÒÓȈӺ乯˰ˆÈmãËÓÒÒ
                  
                  
                  
                                                                                                                                            n
    |¹¯ËËãËÓÒË
    
                                   zºªÁÁÒÒËӈ© ξ1 ,ξ 2 ,...,ξ n  ¯ÈÏãºÎËÓÒ« x =                                                         ∑ ξ i g i  ÓÈÏ©mÈ                  ˆ°« rvvélq
                                                                                                                                            i =1
                                   tjzjuq ÒãÒ rvuwvtntzjuq  ªãËäËӈÈ [ ãÒÓˮӺº ¹¯º°ˆ¯ÈÓ°ˆmÈ Λn m
                                   ­ÈÏÒ°Ë {g1 , g 2 ,..., g n } 
                  
                  
                  ~ÈäˈÒ䈺m°Òよ˺¯Ë䩪ãËäËӈãÒÓˮӺº¹¯º°ˆ¯ÈÓ°ˆmÈ Λn m­ÈÏÒ°Ë
                                                                          ξ1
                                                                          ξ
{g1 , g 2 ,..., g n } ºÓºÏÓÈÓº¹¯Ë°ˆÈmã«Ëˆ°«n}ºä¹ºÓËӈөä°ˆºã­ºä 2 
                                                                          ...
                                                                          ξn
                                                                                                   n                                  n
                  ‚°ˆ  m }ºÓ}¯ËˆÓºä ­ÈÏÒ°Ë x =                                              ∑ ξ i gi  Ò              y = ∑ η i gi  ‘ºÈ ÒÏ º¹¯ËËãËÓÒ«
                                                                                                 i =1                                i =1
­ÈÏÒ°ÈÒÈ}°ÒºäãÒÓˮӺº¹¯º°ˆ¯ÈÓ°ˆmȰãË‚ ˆ¹¯ÈmÒãÈm©¹ºãÓËÓÒ«º¹Ë¯ÈÒ®°Ëº
ªãËäËӈÈäÒm}ºº¯ÒÓȈӺ®Áº¯äË
       
       
                  °v¯ÈmÓËÓÒËmȪãËäËӈÈm Λn ¯ÈmÓ©ˆºÈÒˆºã }ºˆºÈ}ºÈ
                  
                                                                                   ξ1 = η1
                                                                                  ξ = η
                                                                                   2
                              n                                    n
                   ∑ ξ i g i = x = y = ∑ η i g i ÒãÒm}ºº¯ÒÓȈӺ®Áº¯äË 
                                                                                            2
                                                                                              
                        i =1                i =1                                       ...
                                                                                  ξ n = η n
                  
                  °vãºÎËÓÒË
                                                                           ξ1 η1       ξ1 + η1
                                              n
                                                                           ξ 2 η2      ξ + η2
                   x + y = ∑ (ξ i + η i ) gi ÒãÒmäȈ¯ÒÓº®Áº¯äË     +     = 2        
                                i =1                                       ...   ...       ...
                                                                           ξ n ηn      ξ n + ηn
                  
                  °äÓºÎËÓÒËÓÈÒ°ãº
                                                                                      ξ1    λξ1
                                               n                    n
                                                                                      ξ2    λξ 2
                   λ x = λ ∑ ξ i gi = ∑ ( λ ξ i ) gi ÒãÒmäȈ¯ÒÓº®Áº¯äË λ     =      
                                 i =1       i =1                                      ...    ...
                                                                                      ξn    λξ n