Аналитическая геометрия и линейная алгебра. Умнов А.Е. - 166 стр.

UptoLike

Составители: 

Рубрика: 


Ë} ÒÒ}ÈÁË ¯©m©° Ë®äÈËäÈÒ}Òlnj
ÙkÓÈãÒÒ˰}È«˺äË¯Ò«ÒãÒÓË®ÓÈ«ÈãË¯Èµ

äÓºmkp
~ÈäËÒä º ¹ºãËÓÓ©Ë ¹¯ÈmÒãÈ °ºm¹ÈÈ ° º¹¯ËËãËÓÒËä Ë®°mÒ® °
äÈ¯ÒÈäÒ°ºãÈäÒ
{
n
Λ
ÈÏÒ°äºÎË©m©¯ÈÓÓËËÒÓ°mËÓÓ©ä°¹º°ººäÒ¹ººä¹¯Ë°Èm
ã«Ë ¹¯È}Ò˰}Ò® ÒÓ˯˰ ¹¯ÈmÒãº ÒÏäËÓËÓÒ« }ºº¯ÒÓÈ ªãËäËÓÈ ãÒÓˮӺº ¹¯º
°¯ÈÓ°mÈ
n
Λ
¹¯Ò¹Ë¯Ë²ºËººÓººÈÏÒ°È}¯ºä
°m
n
Λ
ÈÓ©mÈÈÏÒ°ÈÙ°ȯ©®µ
{, ,..., }
gg g
n
12
ÒÙÓº®µ
{, ,..., }
′′ ′
gg g
n
12
°
°ººmË°mÒäÒ }ºº¯ÒÓÈÓ©äÒ ¯ÈÏãºÎËÓÒ«äÒ ªãËäËÓÈ
x

xg
ii
i
n
=
=
ξ
1
Ò
=
=
n
i
ii
gx
1
ξ
 ° }¯ºäË ºº ÒÏm˰Ó© ¯ÈÏãºÎËÓÒ« ªãËäËÓºm ÙÓºmººµ ÈÏÒ°È ¹º
ªãËäËÓÈäÙ°ȯººµ
==
=
ggjn
jiji
i
n
σ
1
1;[,]

|¹¯ËËãËÓÒË

lÈ¯ÒÈ
S

j
®
([,])
∀=
jn
1
°ºãË}ºº¯º®°º°ºÒ ÒÏ }ºªÁÁÒ
ÒËÓºm
σ
ij
}ºº¯ÒÓÈÓ©² ¯ÈÏãºÎËÓÒ® ªãËäËÓºm ÙÓºmººµ ÈÏÒ°È ¹º
ªãËäËÓÈä Ù°ȯººµ ÓÈÏ©mÈË°« ujzéq|np wnén}vlj º ÈÏÒ°È
},...,,{
21
n
ggg
}ÈÏÒ°
},...,,{
21
n
ggg

|äËÒäºªºº¹¯ËËãËÓÒË«mã«Ë°«ººËÓÒËäº¹¯ËËãËÓÒ«
ºÈ°¹¯ÈmËãÒmÈ
˺¯ËäÈ

zºº¯ÒÓÈ©
n
ξ
ξ
ξ
,...,,
21
Ò
n
ξ
ξ
ξ
,...,,
21
°m«ÏÈÓ© °ººÓºËÓÒËä
ξ
σ
iijj
j
n
in=
=
=
1
1;[,]
 Ë }ºªÁÁÒÒËÓ©
σ
ij
 ªãËäËÓ© äÈ¯Ò©
¹Ë¯Ë²ºÈ
S
º˰
=
=
gg
jiji
i
n
σ
1

j
=[1,
n
]
iº}ÈÏÈËã°mº
° ÒÏm˰Óº ¯ÈÏãºÎËÓÒË mË}º¯ºm ÙÓºmººµ ÈÏÒ°È ¹º Ù°ȯºäµ
=
=
gg
jiji
i
n
σ
1
ºÈ°¹¯ÈmËãÒm©¯ÈmËÓ°mÈ
 Ë }  Ò Ò    } È Á Ë  ¯ ©   m © °  Ë ®   ä È ˆ Ë ä È ˆ Ò } Ò   l n ‘ j 
ÙkÓÈã҈Ò˰}È«˺äˈ¯Ò«ÒãÒÓË®ÓÈ«ÈãË­¯ÈµäÓºmkp



          ~ÈäˈÒä ˆº ¹ºã‚ËÓÓ©Ë ¹¯ÈmÒãÈ °ºm¹ÈÈ ˆ ° º¹¯ËËãËÓÒËä Ë®°ˆmÒ® °
äȈ¯ÒÈäÒ °ˆºã­ÈäÒ 
          
          
        { Λn ­ÈÏÒ°äºÎˈ­©ˆ m©­¯ÈÓÓËËÒÓ°ˆmËÓÓ©ä°¹º°º­ºäÒ¹ºˆºä‚¹¯Ë°ˆÈm
ã«Ëˆ ¹¯È}ˆÒ˰}Ò® Òӈ˯˰ ¹¯ÈmÒ㺠ÒÏäËÓËÓÒ« }ºº¯ÒÓȈ ªãËäËӈÈ ãÒÓˮӺº ¹¯º
°ˆ¯ÈÓ°ˆmÈ Λn ¹¯Ò¹Ë¯Ë²ºËºˆºÓºº­ÈÏÒ°È}¯‚ºä‚
       
                   ‚°ˆ m Λn ÈÓ©mÈ­ÈÏÒ°ÈÙ°ˆÈ¯©®µ {g1 , g 2 ,..., g n } ÒÙÓºm©®µ {g1′ , g 2′ ,..., g n′ } °
                                                                                                                                n
°ººˆmˈ°ˆm‚ ÒäÒ  }ºº¯ÒÓȈөäÒ ¯ÈÏãºÎËÓÒ«äÒ ªãËäËӈÈ x                                                           x = ∑ ξ i gi  Ò
                                                                                                                               i =1
         n
x = ∑ ξ i′g i′  ‚°ˆ  }¯ºäË ˆºº ÒÏm˰ˆÓ© ¯ÈÏãºÎËÓÒ« ªãËäËӈºm ÙÓºmººµ ­ÈÏÒ°È ¹º
        i =1
                                            n
ªãËäËӈÈäÙ°ˆÈ¯ººµ g ′j =                ∑ σ ij gi ;        j = [1, n ] 
                                           i =1
                   
                   
                   
    |¹¯ËËãËÓÒË               lȈ¯ÒÈ S  j® (∀j = [1, n])  °ˆºã­Ë }ºˆº¯º® °º°ˆºÒˆ ÒÏ  }ºªÁÁÒ
    
                               ÒËӈºm σ ij  }ºº¯ÒÓȈө² ¯ÈÏãºÎËÓÒ® ªãËäËӈºm ÙÓºmººµ ­ÈÏÒ°È ¹º
                               ªãËäËӈÈä Ù°ˆÈ¯ººµ ÓÈÏ©mÈˈ°« ujzéq|np wnén}vlj ºˆ ­ÈÏÒ°È
                               {g1, g 2 ,..., g n } }­ÈÏÒ°‚{g1′ , g 2′ ,..., g n′ } 
           
           
           |ˆäˈÒ䈺ªˆºº¹¯ËËãËÓÒË«mã«Ëˆ°«º­º­ËÓÒË亹¯ËËãËÓÒ«
           
           
           
           ‘ºÈ°¹¯ÈmËãÒmÈ
           
           
    ‘˺¯ËäÈ      zºº¯ÒÓȈ© ξ1 ,ξ 2 ,...,ξ n  Ò ξ1′ , ξ 2′ ,..., ξ n′  °m«ÏÈÓ© °ººˆÓºËÓÒËä
                             n
    
                               ξi = ∑ σ ij ξ ′j ; i = [1, n]  Ë }ºªÁÁÒÒËӈ© σ ij   ªãËäËӈ© äȈ¯Ò©
                                    j =1
                                                                          n
                               ¹Ë¯Ë²ºÈ S ˆº˰ˆ  g ′j =            ∑ σ ij gi j=[1,n] 
                                                                         i =1


     iº}ÈÏȈËã°ˆmº
      
      
         ‚°ˆ  ÒÏm˰ˆÓº ¯ÈÏãºÎËÓÒË mË}ˆº¯ºm ÙÓºmººµ ­ÈÏÒ°È ¹º Ù°ˆÈ¯ºä‚µ
                         n
                   g ′j = ∑ σ ij g i ‘ºÈ°¹¯ÈmËãÒm©¯ÈmËÓ°ˆmÈ
                        i =1