Аналитическая геометрия и линейная алгебра. Умнов А.Е. - 168 стр.

UptoLike

Составители: 

Рубрика: 


Ë} ÒÒ}ÈÁË ¯©m©° Ë®äÈËäÈÒ}Òlnj
ÙkÓÈãÒÒ˰}È«˺äË¯Ò«ÒãÒÓË®ÓÈ«ÈãË¯Èµ

äÓºmkp
¯Òä˯

° lÓºÎ˰mº ¯ÈÒ°mË}º¯ºm m°Ë² ºË} ãËÎÈÒ² ÓÈ ÓË}ºº¯º®
¹ãº°}º°Ò¹¯º²º«Ë® ˯ËÏÓÈÈãº }ºº¯ÒÓÈ«mã«Ë°«¹º¹¯º
°¯ÈÓ°mºämºäÓºÎ˰mË¯ÈÒ°mË}º¯ºmm°Ë²ºË}¯Ë²ä˯Ӻº
˺äË¯Ò˰}ºº¹¯º°¯ÈÓ°mÈ
° lÓºÎ˰mº m°Ë² äÓººãËÓºm °˹ËÓÒ ÓË Ë Ëä
n
 ˰¹º
¹¯º°¯ÈÓ°mº m ãÒÓˮӺä ¹¯º°¯ÈÓ°mË Ó˹¯Ë¯©mÓ©² ÁÓ}Ò®
C[,]
αβ

° {¹¯º°¯ÈÓ°mË
n
ä˯ө²°ºãºm°ºmº}¹Óº°¯ËËÓÒ® ºÓº
¯ºÓº®°Ò°Ëä©ãÒÓˮө²¯ÈmÓËÓÒ®°
n
ÓËÒÏm˰Ó©äÒÒ°º°Óºm
Óº® äÈ¯ÒË® ¯ÈÓÈ
r
 º¯ÈÏË ¹º¹¯º°¯ÈÓ°mº ¯ÈÏä˯Ӻ°Ò
rn

° º¹¯º°¯ÈÓ°mºäãººãÒÓˮӺº¹¯º°¯ÈÓ°mÈË
È°Èäº¹¯º°¯ÈÓ°mº
äÓºÎ˰mº°º°º«ËËÒÏºÓººÓãËmººªãËäËÓÈ
|¹¯ËËãËÓÒË

°ÈÓ©mÈ¹º¹¯º°¯ÈÓ°mÈ
1
Ò
2
ãÒÓˮӺº¹¯º°¯ÈÓ°mÈ
Λ

°Ìi~nlqtntqnu¹º¹¯º°¯ÈÓ°m
1
Ò
2
ÓÈÏ©mÈË°«
äÓºÎ˰mº ªãËäËÓºm
Λ
x
 º
1
x
ãÒº
2
x

|ËÒÓËÓÒË¹º¹¯º°¯ÈÓ°m
1
Ò
2
ººÏÓÈÈË°«
21

°
Ínénxn·ntqnu¹º¹¯º°¯ÈÓ°m
1
Ò
2
ÓÈÏ©mÈË°«äÓºÎ˰mº
ªãËäËÓºm
Λx
 ¹¯ÒÓÈãËÎÈÒ²
1
Ò
2
ºÓºm¯ËäËÓÓº
˯˰ËËÓÒË¹º¹¯º°¯ÈÓ°m
1
Ò
2
ººÏÓÈÈË°«
21

°
fyuuvp¹º¹¯º°¯ÈÓ°m
1
Ò
2
ÓÈÏ©mÈË°« °ºmº}¹Óº°
m°Ë² ªãËäËÓºm
Λ+
21
xx
 ¹¯Ò °ãºmÒÒ º
11
x
Ò
22
x 
vääÈ ¹º¹¯º°¯ÈÓ°m
1
Ò
2
ººÏÓÈÈË°«
21
+
°
Íé¹uvp xyuuvp¹º¹¯º°¯ÈÓ°m
1
Ò
2
ÓÈÏ©mÈË°« °ºmº
}¹Óº°m°Ë²ªãËäËÓºm
Λ+
21
xx
¹¯Ò°ãºmÒÒº
11
x
Ò
22
x
Ò
}{
21
o
=
 ¯«äÈ« °ääÈ ººÏÓÈÈË°«
21

iº}ÈÎÒË°È亰º«ËãÓºº°¹¯ÈmËãÒmÈ
˺¯ËäÈ

zÈ}°ääÈÈ}Ò¹Ë¯Ë°ËËÓÒË¹º¹¯º°¯ÈÓ°m
1
Ò
2
m
Λ
˰È}
ÎË¹º¹¯º°¯ÈÓ°mºm
Λ
 Ë }  Ò Ò    } È Á Ë  ¯ ©   m © °  Ë ®   ä È ˆ Ë ä È ˆ Ò } Ò   l n ‘ j 
ÙkÓÈã҈Ò˰}È«˺äˈ¯Ò«ÒãÒÓË®ÓÈ«ÈãË­¯ÈµäÓºmkp



 ¯Òä˯            ° lÓºÎ˰ˆmº ¯È҂°mË}ˆº¯ºm m°Ë² ˆºË} ãËÎȝҲ ÓÈ ÓË}ºˆº¯º®
                   ¹ãº°}º°ˆÒ ¹¯º²º«Ë® ˯ËÏ ÓÈÈ㺠}ºº¯ÒÓȈ «mã«Ëˆ°« ¹º¹¯º
                          °ˆ¯ÈÓ°ˆmºämºäÓºÎ˰ˆm˯È҂°mË}ˆº¯ºmm°Ë²ˆºË}ˆ¯Ë²ä˯Ӻº
                          ˺äˈ¯Ò˰}ºº¹¯º°ˆ¯ÈÓ°ˆmÈ
                        


                        ° lÓºÎ˰ˆmº m°Ë² äÓººãËÓºm °ˆË¹ËÓÒ ÓË m© Ë Ëä n ˰ˆ  ¹º
                              ¹¯º°ˆ¯ÈÓ°ˆmº m ãÒÓˮӺä ¹¯º°ˆ¯ÈÓ°ˆmË Ó˹¯Ë¯©mÓ©² Á‚Ó}Ò®
                              C[α , β ] 
                        


                        ° { ¹¯º°ˆ¯ÈÓ°ˆmË nä˯ө² °ˆºã­ºm °ºmº}‚¹Óº°ˆ  ¯Ë ËÓÒ® ºÓº
                              ¯ºÓº®°Ò°ˆËä©ãÒÓˮө²‚¯ÈmÓËÓÒ®°n ÓËÒÏm˰ˆÓ©äÒÒ°º°Óºm
                              Óº® äȈ¯ÒË® ¯ÈÓÈ r  º­¯Èςˈ ¹º¹¯º°ˆ¯ÈÓ°ˆmº ¯ÈÏä˯Ӻ°ˆÒ
                              n − r 
                        


                        ° º¹¯º°ˆ¯ÈÓ°ˆmºäã ­ººãÒÓˮӺº¹¯º°ˆ¯ÈÓ°ˆmÈ­‚ˈ
                                            È °È亹¯º°ˆ¯ÈÓ°ˆmº
                                            ­ äÓºÎ˰ˆmº°º°ˆº«ËËÒϺӺºӂãËmººªãËäËӈÈ
            
            
 |¹¯ËËãËÓÒË               ‚°ˆ ÈÓ©mȹº¹¯º°ˆ¯ÈÓ°ˆmÈ Ω1 Ò Ω 2 ãÒÓˮӺº¹¯º°ˆ¯ÈÓ°ˆmÈ Λ 
                     
                                 °Ìi~nlqtntqnu ¹º¹¯º°ˆ¯ÈÓ°ˆm Ω1  Ò Ω 2  ÓÈÏ©mÈˈ°«
                                        äÓºÎ˰ˆmº ªãËäËӈºm  x ∈ Λ  ˆº x ∈ Ω1  ãÒ­º x ∈ Ω 2 
                                        |­žËÒÓËÓÒ˹º¹¯º°ˆ¯ÈÓ°ˆm Ω1 Ò Ω 2 º­ºÏÓÈÈˈ°« Ω1 ∪ Ω 2 
                                        

                                  °Ínénxn·ntqnu¹º¹¯º°ˆ¯ÈÓ°ˆm Ω1 Ò Ω 2 ÓÈÏ©mÈˈ°«äÓºÎ˰ˆmº
                                        ªãËäËӈºm x ∈ Λ  ¹¯ÒÓÈãËÎȝҲ Ω1  Ò Ω 2  ºÓºm¯ËäËÓÓº
                                        Ë¯Ë°ËËÓÒ˹º¹¯º°ˆ¯ÈÓ°ˆm Ω1 Ò Ω 2 º­ºÏÓÈÈˈ°« Ω1 ∩ Ω 2 
                                        

                                  °fyuuvp ¹º¹¯º°ˆ¯ÈÓ°ˆm Ω1  Ò Ω 2  ÓÈÏ©mÈˈ°« °ºmº}‚¹Óº°ˆ 
                                       m°Ë² ªãËäËӈºm x1 + x 2 ∈ Λ  ¹¯Ò ‚°ãºmÒÒ ˆº x1 ∈ Ω1  Ò
                                         x 2 ∈ Ω 2  v‚ääÈ ¹º¹¯º°ˆ¯ÈÓ°ˆm Ω1  Ò Ω 2  º­ºÏÓÈÈˈ°«
                                         Ω1 + Ω 2 
                                        

                                  °Íé¹uvp xyuuvp ¹º¹¯º°ˆ¯ÈÓ°ˆm Ω1  Ò Ω 2  ÓÈÏ©mÈˈ°« °ºmº
                                       }‚¹Óº°ˆ m°Ë²ªãËäËӈºm x1 + x 2 ∈ Λ ¹¯Ò‚°ãºmÒÒˆº x1 ∈ Ω1 
                                        Ò x 2 ∈ Ω 2  Ò Ω1 ∩ Ω 2 = {o}  ¯«äÈ« °‚ääÈ º­ºÏÓÈÈˈ°«
                                        Ω1 ⊕ Ω 2 
         
         
         iº}ÈÎ҈˰È亰ˆº«ˆËã Óºˆº°¹¯ÈmËãÒmÈ
         
 ‘˺¯ËäÈ      zÈ}°‚ääȈÈ}ҹ˯˰ËËÓÒ˹º¹¯º°ˆ¯ÈÓ°ˆm Ω1 Ò Ω 2 m Λ ˰ˆ ˆÈ}
 
               Î˹º¹¯º°ˆ¯ÈÓ°ˆmºm Λ