Аналитическая геометрия и линейная алгебра. Умнов А.Е. - 170 стр.

UptoLike

Составители: 

Рубрика: 


Ë} ÒÒ}ÈÁË ¯©m©° Ë®äÈËäÈÒ}Òlnj
ÙkÓÈãÒÒ˰}È«˺äË¯Ò«ÒãÒÓË®ÓÈ«ÈãË¯Èµ

äÓºmkp
ÒÓË®ÓÈ«ººãº}È°Ò°Ëä©ªãËäËÓºm
|¹¯ËËãËÓÒË

vºmº}¹Óº° m°ËmºÏäºÎÓ©² ãÒÓˮө² }ºäÒÓÈÒ® ÓË}ºº¯ºº äÓº
Î˰mÈªãËäËÓºm
},...,,{
21
k
xxx
ãÒÓˮӺº¹¯º°¯ÈÓ°mÈ
Λ
ÓÈÏ©mÈË°«
sqtnptvpvivsv·rvpªººäÓºÎ˰mÈÒººÏÓÈÈË°«
},...,,{
21
k
xxxL

¯Òä˯

lÓºÎ˰mº äÓººãËÓºm °˹ËÓÒ ÓË Ë Ëä
n
 «mã«Ë°« ãÒÓˮӺ®
ººãº}º® ÓÈº¯È ºÓºãËÓºm
},...,,,1{
2
n
τττ
m ãÒÓˮӺä ¹¯º°¯ÈÓ°mË
Ó˹¯Ë¯©mÓ©²ÁÓ}Ò®
C
[,]
αβ

°ÏÈÈÓ ÓÈº¯ ªãËäËÓºm
},...,,{
21
k
xxx
 ¹º¯ºÎÈÒ² ãÒÓË®Óººãº}
},...,,{
21
k
xxxL
 ºÈ ãº® ªãËäËÓ ªº® ãÒÓˮӺ® ººãº}Ò ÒäËË
xx
ii
i
k
=
=
λ
1
Ò
°¹¯ÈmËãÒmÈ
˺¯ËäÈ

lÓºÎ˰mº m°Ë² ªãËäËÓºm ¹¯ÒÓÈãËÎÈÒ² ãÒÓˮӺ® ººãº}Ë
},...,,{
21
k
xxxL
«mã«Ë°«ãÒÓˮөä¹¯º°¯ÈÓ°mºä¯ÈÏä˯Ӻ°Ò
m
Ë
m
äÈ}°ÒäÈãÓºË Ò°ãº ãÒÓˮӺ ÓËÏÈmÒ°Ò䩲 ªãËäËÓºm mº äÓº
Î˰mË
},...,,{
21
k
xxx
iº}ÈÏÈËã°mº
°s˹º°¯Ë°mËÓÓº® ¹¯ºm˯}º® ËÎÈËä°« º ã« °ºmº}¹Óº°Ò ªãËäËÓºm
È
xx
ii
i
k
=
=
λ
1
m¹¯Ë¹ºãºÎËÓÒÒº
λ
i
¹¯ºÒÏmºãÓ©ËÒ°ãÈ°¹¯ÈmËãÒm©
m°Ë È}°Òºä© º¹¯ËËãËÓÒ«  º ˰ ¯È°°äÈ¯ÒmÈËäÈ« ãÒÓË®ÓÈ« ººãº}È
«mã«Ë°«ãÒÓˮөä¹¯º°¯ÈÓ°mºä
°° äÈ}°ÒäÈãÓºË Ò°ãº ãÒÓˮӺ ÓËÏÈmÒ°Ò䩲 ªãËäËÓºm m ÓÈº¯Ë
{ , ,..., }
xx x
k
12
¯ÈmÓº
m

mk
rËÏº¯ÈÓÒËÓÒ«ºÓº°ÒäºÎÓº°ÒÈº
ªÒ ªãËäËÓ© ˰
m
xxx
,...,,
21
 { ªºä °ãÈË
],1[;
1
kmjxx
m
i
ijij
+==
=
α
Ò
ãº®ªãËäËÓãÒÓˮӺ®ººãº}ÒäºÎË©¹¯Ë°ÈmãËÓmËãÒÓˮӺ®
}ºäÒÓÈÒÒªãËäËÓºm
xx x
m
12
,,...,

°º}ÈÎËä ˹˯ º ãº® ÓÈº¯ ÒÏ
l

lm
>
 ªãËäËÓºm ÈÓÓº® ãÒÓˮӺ®
ººãº}Ò Ë ãÒÓˮӺ ÏÈmÒ°Òä©ä iã« ªºº m©˯Ëä
l
ªãËäËÓºm
l
yyy
,...,,
21
 ¹¯ÒÓÈãËÎÈÒ² ãÒÓˮӺ® ººãº}Ë Ò m©¯ÈÏÒä Ò² ˯ËÏ ªãË
 Ë }  Ò Ò    } È Á Ë  ¯ ©   m © °  Ë ®   ä È ˆ Ë ä È ˆ Ò } Ò   l n ‘ j 
ÙkÓÈã҈Ò˰}È«˺äˈ¯Ò«ÒãÒÓË®ÓÈ«ÈãË­¯ÈµäÓºmkp



ÒÓË®ÓÈ«º­ºãº}ȰҰˆË䩪ãËäËӈºm
            
            
    |¹¯ËËãËÓÒË         vºmº}‚¹Óº°ˆ  m°ËmºÏäºÎÓ©² ãÒÓˮө² }ºä­ÒÓÈÒ® ÓË}ºˆº¯ºº äÓº
    
                         Î˰ˆmȪãËäËӈºm { x1, x2 ,..., xk } ãÒÓˮӺº¹¯º°ˆ¯ÈÓ°ˆmÈ Λ ÓÈÏ©mÈˈ°«
                         sqtnptvpvivsv·rvpªˆººäÓºÎ˰ˆmÈÒº­ºÏÓÈÈˈ°« L{x1, x2 ,..., xk } 
            
            
 ¯Òä˯                 lÓºÎ˰ˆmº äÓººãËÓºm °ˆË¹ËÓÒ ÓË m© Ë Ëä n «mã«Ëˆ°« ãÒÓˮӺ®
 
                         º­ºãº}º® ÓÈ­º¯È ºÓºãËÓºm {1,τ ,τ 2 ,...,τ n }  m ãÒÓˮӺä ¹¯º°ˆ¯ÈÓ°ˆmË
                         Ó˹¯Ë¯©mÓ©²Á‚Ó}Ò® C[α , β ] 
            
            
            ‚°ˆ  ÏÈÈÓ ÓÈ­º¯ ªãËäËӈºm {x1, x2 ,..., xk }  ¹º¯ºÎÈ Ò² ãÒÓˮӂ  º­ºãº}‚
                                                                                                                                   k
 L{x1, x2 ,..., xk }  ‘ºÈ ã ­º® ªãËäËӈ ªˆº® ãÒÓˮӺ® º­ºãº}Ò ÒäËˈ mÒ x = ∑ λi x i  Ò
                                                                                                                                  i =1
°¹¯ÈmËãÒmÈ
       
    ‘˺¯ËäÈ             lÓºÎ˰ˆmº m°Ë² ªãËäËӈºm ¹¯ÒÓÈãËÎȝҲ ãÒÓˮӺ® º­ºãº}Ë
    
    
                         L{x1, x2 ,..., xk } «mã«Ëˆ°«ãÒÓˮө乯º°ˆ¯ÈÓ°ˆmºä¯ÈÏä˯Ӻ°ˆÒ m Ë
                         m  äÈ}°ÒäÈã ÓºË Ò°ãº ãÒÓˮӺ ÓËÏÈmÒ°Ò䩲 ªãËäËӈºm mº äÓº
                         Î˰ˆmË {x1, x2 ,..., xk } 

     iº}ÈÏȈËã°ˆmº
         
         
        °s˹º°¯Ë°ˆmËÓÓº® ¹¯ºm˯}º® ‚­ËÎÈËä°« ˆº ã« °ºmº}‚¹Óº°ˆÒ ªãËäËӈºm
                               k
                mÒÈ x =     ∑ λi x i  m¹¯Ë¹ºãºÎËÓÒÒˆº λi¹¯ºÒÏmºã                             Ó©ËÒ°ãÈ °¹¯ÈmËãÒm©
                              i =1
             m°Ë È}°Òºä© º¹¯ËËãËÓÒ«  ˆº ˰ˆ  ¯È°°äȈ¯ÒmÈËäÈ« ãÒÓË®ÓÈ« º­ºãº}È
             «mã«Ëˆ°«ãÒÓˮө乯º°ˆ¯ÈÓ°ˆmºä
             
             
        °‚°ˆ  äÈ}°ÒäÈã ÓºË Ò°ãº ãÒÓˮӺ ÓËÏÈmÒ°Ò䩲 ªãËäËӈºm m ÓÈ­º¯Ë
             { x1 , x2 ,..., xk } ¯ÈmÓº m m ≤ k rËϺ¯ÈÓÒËÓÒ«º­Óº°ˆÒäºÎÓº°҈Ȉ ˆº
                                                                                                        m
                ªˆÒ ªãËäËӈ© ˰ˆ  x1, x 2 ,..., x m  { ªˆºä °ã‚ÈË x j =                       ∑α ji xi ;         j = [m + 1, k ]  Ò
                                                                                                       i =1
             ã ­º®ªãËäËӈãÒÓˮӺ®º­ºãº}ÒäºÎˈ­©ˆ ¹¯Ë°ˆÈmãËÓmmÒËãÒÓˮӺ®
             }ºä­ÒÓÈÒÒªãËäËӈºm x1 , x 2 ,..., x m 
             
             
        °º}ÈÎËä ˆË¹Ë¯  ˆº ã ­º® ÓÈ­º¯ ÒÏ l l > m  ªãËäËӈºm ÈÓÓº® ãÒÓˮӺ®
             º­ºãº}Ò ­‚ˈ ãÒÓˮӺ ÏÈmÒ°Òä©ä iã« ªˆºº m©­Ë¯Ëä l ªãËäËӈºm
              y1, y 2 ,..., yl  ¹¯ÒÓÈãËÎȝҲ ãÒÓˮӺ® º­ºãº}Ë Ò m©¯ÈÏÒä Ò² ˯ËÏ ªãË