Аналитическая геометрия и линейная алгебра. Умнов А.Е. - 172 стр.

UptoLike

Составители: 

Рубрика: 


Ë} ÒÒ}ÈÁË ¯©m©° Ë®äÈËäÈÒ}Òlnj
ÙkÓÈãÒÒ˰}È«˺äË¯Ò«ÒãÒÓË®ÓÈ«ÈãË¯Èµ

äÓºmkp
jϺ亯ÁÒÏäãÒÓˮө²¹¯º°¯ÈÓ°m
cȰ°äº¯ÒämÈãÒÓˮө²¹¯º°¯ÈÓ°mÈäÓºÎ˰mºäÓººãËÓºm
P
2
()
τ
°˹ËÓÒ
ÓËm©ËËäÒäÓºÎ˰mºmË}º¯ºm¯Ë²ä˯Ӻº˺äË¯Ò˰}ºº¹¯º°¯ÈÓ°mÈ
|¹Ë¯ÈÒÒ°ãºÎËÓÒ«äÓººãËÓºmÒÒ²äÓºÎËÓÒ«ÓÈ Ò°ãºã««°ãË
Òäº¯ÈϺä
22
2
212121
2
222
2
111
)()()()(
)()()()()(
τλκτληλ
ξ
κτητ
ξ
λ
τκκτηη
ξ
ξ
τκτη
ξ
τκτη
ξ
++=++
+++++=+++++
kÓÈãºÒÓ©Ë º¹Ë¯ÈÒÒ ° ¯Ë²ä˯өäÒ mË}º¯ÈäÒ m }ºº¯ÒÓÈÓº® Áº¯äË m
°mººË¯ËÏȹҰ©mÈ°«È}
λκ
λη
λ
ξ
κ
η
ξ
λ
κκ
ηη
ξ
ξ
κ
η
ξ
κ
η
ξ
=
+
+
+
=+
;
21
21
21
2
2
2
1
1
1

v¯ÈmÓÒmÈ« ªÒ ÏȹҰÒ äºÎÓº ÏÈäËÒ º ¹¯Ò¯ºÈ ÈÓÓ©² äÓºÎ˰m ÓË
Ò¯ÈË ¯ºãÒ È Ò°°ãË°« Ò² ²È¯È}˯ҰÒ}Ò °m«ÏÈÓÓ©Ë ºã}º°º¹Ë¯ÈÒ«äÒ
°ãºÎËÓÒ«ÒäÓºÎËÓÒ«ÓÈÒ°ãº
|äËËÓÓºË°mº®°mºãÒÓˮө²¹¯º°¯ÈÓ°mÓº°ÒÓÈÏmÈÓÒËqovuvé{qoujrº
ãËËºÓº˺º¹Ò°©mÈË
|¹¯ËËãËÓÒË

imÈ ãÒÓˮө² ¹¯º°¯ÈÓ°mÈ
1
Λ
Ò
2
Λ
ÓÈÏ©mÈ°« qovuvé{tuq ˰ãÒ
°˰mËmÏÈÒäÓººÓºÏÓÈÓºËºº¯ÈÎËÓÒË
F :
1
Λ
2
Λ
È}ºËº
ã«
∀∈
xy,
Λ
1
λ

°

yFxFyxF
ˆˆ
)(
ˆ
+=+

°

()
Fx Fx
λλ
=
|º¯ÈÎËÓÒË
F
ÓÈÏ©mÈË°« qovuvé{qouvu ãÒÓˮө² ¹¯º°¯ÈÓ°m
1
Λ
Ò
2
Λ

sȹºäÓÒäººº¯ÈÎËÓÒË
F
«mã«Ë°«kojqutvvltvotj·tuiqnrzqktvxz
F
˰ãÒ
È ¯ÈÏÓ©ËªãËäËÓ©ÒÏ
1
Λ
ÒäËm
2
Λ
¯ÈÏÓ©Ëº¯ÈÏ©qt~nrzqktvxz
F

 }ÈΩ®ªãËäËÓÒÏ
2
Λ
«mã«Ë°«º¯ÈϺäÓË}ºº¯ººªãËäËÓÈÒÏ
1
Λ
xíé~nr
zqktvxz
F

 Ë }  Ò Ò    } È Á Ë  ¯ ©   m © °  Ë ®   ä È ˆ Ë ä È ˆ Ò } Ò   l n ‘ j 
ÙkÓÈã҈Ò˰}È«˺äˈ¯Ò«ÒãÒÓË®ÓÈ«ÈãË­¯ÈµäÓºmkp



jϺ亯ÁÒÏäãÒÓˮө²¹¯º°ˆ¯ÈÓ°ˆm
      
      
      
      cȰ°äºˆ¯ÒämÈãÒÓˮө²¹¯º°ˆ¯ÈÓ°ˆmÈäÓºÎ˰ˆmºäÓººãËÓºm P2 (τ ) °ˆË¹ËÓÒ
ÓËm© ËËäÒäÓºÎ˰ˆmºmË}ˆº¯ºmˆ¯Ë²ä˯Ӻº˺äˈ¯Ò˰}ºº¹¯º°ˆ¯ÈÓ°ˆmÈ
      
      |¹Ë¯ÈÒÒ °ãºÎËÓÒ« äÓººãËÓºm Ò Ò² ‚äÓºÎËÓÒ« ÓÈ Ò°ãº m©ã««ˆ°ãË‚ 
Ò亭¯ÈϺä
      
                        (ξ1 + η1τ + κ 1τ 2 ) + (ξ 2 + η 2τ + κ 2τ 2 ) = (ξ1 + ξ 2 ) + (η1 + η 2 )τ + (κ 1 + κ 2 )τ 2
                                                                                                                                      
                        λ (ξ + ητ + κτ 2 ) = (λξ ) + (λη )τ + (λκ )τ 2
       
       kÓÈãºÒÓ©Ë º¹Ë¯ÈÒÒ ° ˆ¯Ë²ä˯өäÒ mË}ˆº¯ÈäÒ m }ºº¯ÒÓȈӺ® Áº¯äË m
°mº º˯Ë ÏȹҰ©mÈ ˆ°«ˆÈ}
       
                                                   ξ1   ξ2    ξ1 + ξ2                      ξ   λξ
                                                   η1 + η 2 = η1 + η 2 ;                 λ η = λη 
                                                   κ1   κ2    κ1 + κ 2                     κ   λκ
                                                
         
         v¯ÈmÓÒmÈ« ªˆÒ ÏȹҰÒ äºÎÓº ÏÈäˈ҈  ˆº ¹¯Ò¯ºÈ ÈÓÓ©² äÓºÎ˰ˆm ÓË
Ò¯Èˈ ¯ºãÒ }ºÈ Ò°°ãË‚ ˆ°« Ò² ²È¯È}ˆË¯Ò°ˆÒ}Ò °m«ÏÈÓÓ©Ë ˆºã }º ° º¹Ë¯ÈÒ«äÒ
°ãºÎËÓÒ«Ò‚äÓºÎËÓÒ«ÓÈÒ°ãº
         
         |ˆäËËÓӺ˰mº®°ˆmºãÒÓˮө²¹¯º°ˆ¯ÈÓ°ˆmÓº°ÒˆÓÈÏmÈÓÒËqovuvé{qoujrº
ãËˈºÓºËºº¹Ò°©mÈˈ
         
         
 |¹¯ËËãËÓÒË   imÈ ãÒÓˮө² ¹¯º°ˆ¯ÈÓ°ˆmÈ Λ1  Ò Λ 2  ÓÈÏ©mÈ ˆ°« qovuvé{t€uq ˰ãÒ
 
                °‚Ë°ˆm‚ˈmÏÈÒäÓººÓºÏÓÈӺ˺ˆº­¯ÈÎËÓÒË F : Λ1 → Λ 2 ˆÈ}ºËˆº
                ã« ∀x , y ∈ Λ1  ∀λ 
                                                                ° Fˆ ( x + y ) = Fˆx + Fˆy 
                                                                ° F ( λ x ) = λ Fx
                                                                                     
                         |ˆº­¯ÈÎËÓÒË F  ÓÈÏ©mÈˈ°« qovuvé{qouvu ãÒÓˮө² ¹¯º°ˆ¯ÈÓ°ˆm Λ1 
                         Ò Λ 2 
             
             


sȹºäÓÒ䈺ºˆº­¯ÈÎËÓÒË F «mã«Ëˆ°«kojqutvvltvotj·t€u iqnrzqktvxz F ˰ãÒ



      È        ¯ÈÏө˪ãËäËӈ©ÒÏ Λ1 ÒäË ˆm Λ 2 ¯ÈÏө˺­¯ÈÏ© qt~nrzqktvxz F 
      

      ­  }ÈΩ®ªãËäËӈÒÏ Λ 2 «mã«Ëˆ°«º­¯ÈϺäÓË}ºˆº¯ººªãËäËӈÈÒÏ Λ1  xíé~nr
                 zqktvxz F