Аналитическая геометрия и линейная алгебра. Умнов А.Е. - 169 стр.

UptoLike

Составители: 

Рубрика: 

cÈÏ Ëã
173
ÒÓˮӺË¹¯º°¯ÈÓ°mº
˺¯ËäÈ

cÈÏä˯Ӻ°
°ää©
¹º¹¯º°¯ÈÓ°m
1
Ò
2
¯ÈmÓÈ
)dim()dim()dim()dim(
212121
+=+
iº}ÈÏÈËã°mº
°
°¹º¹¯º°¯ÈÓ°mº
21
ÒäËË ÈÏÒ°
},...,,{
21 k
ggg
Ò °ººmË°mËÓÓº
¯ÈÏä˯Ӻ°
k
iº¹ºãÓÒäªºÈÏÒ°ªãËäËÓÈäÒ
},...,,{
21 l
ggg
ºÈÏÒ°Èm
1
Ò
ªãËäËÓÈäÒ
},...,,{
21 m
ggg
º ÈÏÒ°È m
2
 { ªºä °ãÈË }ÈΩ® ªãËäËÓ
21
+
x
äºÎË©¯ÈÏãºÎËÓ¹º°Ò°ËäËªãËäËÓºm
},...,,,,...,,,,...,,{
212121 mlk
ggggggggg

°
º}ÈÎËä ˹˯ ºÓÈº¯ ªãËäËÓºm
},...,,,,...,,,,...,,{
212121 mlk
ggggggggg
ãÒ
ÓˮӺÓËÏÈmÒ°Òäm
Λ

cȰ°äº¯ÒäÓË}ºº¯¯ÈmÓÓãËmºäªãËäËÓãÒÓË®Ó}ºäÒÓÈÒªÒ²
ªãËäËÓºm

oggg
m
p
pp
k
j
jj
l
i
ii
=
++
===
111
ξ
ξ
ξ

~ÈäËÒä º ¹º ¹º°¯ºËÓÒ
2
1
~
=
=
m
p
pp
gx
ξ
 Óº ° ¯º® °º¯ºÓ© ªº ÎË
ªãËäËÓ
1
111
)(
~
+
=
=
===
k
j
jj
l
i
ii
m
p
pp
gggx
ξ
ξ
ξ

wº ºÏÓÈÈË º
~
x ∈∩ΩΩ
12
Ò°ã˺mÈËãÓº m ¯ÈmËÓ°mË  m°Ë
],1[,0;],1[,0
mpli
pi
==
==
ξ
ξ
 k ¹º°}ºã}
},...,,{
21
k
ggg
 ÈÏÒ° º Ò m°Ë
ξ
j
jk
==01,[,]
ÒãÒÓË®ÓÈ«}ºäÒÓÈÒ«°º«È«mãËmº®ȰÒ¯ÈmËÓ°mÈ
¯ÒmÒÈãÓÈ« vã˺mÈËãÓº
},...,,,,...,,,,...,,{
212121
mlk
ggggggggg
ãÒÓˮӺ
ÓËÏÈmÒ°ÒäÈ«°Ò°ËäÈªãËäËÓºm
°
jÏ ¹Ó}È
°
°ãËËº
},...,,,,...,,,,...,,{
212121
mlk
ggggggggg
«mã«Ë°«ÈÏÒ°ºä
m
21
+
cÈÏä˯Ӻ°¹º¹¯º°¯ÈÓ°mÈ
21
+
¹¯Òªºä¯ÈmÓÈ
.)dim()dim()dim(
)()()dim(
2121
21
+=
=+++=++=+
kmklkmkl
˺¯ËäÈº}ÈÏÈÓÈ
c È Ï  Ë ã                                                      173
ÒÓˮӺ˹¯º°ˆ¯ÈÓ°ˆmº



 ‘˺¯ËäÈ                         cÈÏä˯Ӻ°ˆ °‚ä䩹º¹¯º°ˆ¯ÈÓ°ˆm Ω1 Ò Ω 2 ¯ÈmÓÈ
                           
                                                                 dim(Ω1 + Ω 2 ) = dim(Ω1 ) + dim(Ω 2 ) − dim(Ω1 ∩ Ω 2 ) 
                   
  iº}ÈÏȈËã°ˆmº
   
   
   °‚°ˆ  ¹º¹¯º°ˆ¯ÈÓ°ˆmº Ω1 ∩ Ω 2  ÒäËˈ ­ÈÏÒ° {g1 , g 2 ,..., g k }  Ò °ººˆmˈ°ˆmËÓÓº
        ¯ÈÏä˯Ӻ°ˆ  kiº¹ºãÓÒ䪈ºˆ­ÈÏÒ°ªãËäËӈÈäÒ {g1′ , g ′2 ,..., g l′ } º­ÈÏÒ°Èm Ω1 Ò
               ªãËäËӈÈäÒ {g1′′, g ′2′ ,..., g ′m′ }  º ­ÈÏÒ°È m Ω 2  { ªˆºä °ã‚ÈË }ÈΩ® ªãËäËӈ
               x ∈ Ω1 + Ω 2 äºÎˈ­©ˆ ¯ÈÏãºÎËÓ¹º°Ò°ˆËä˪ãËäËӈºm
      
                                                               {g1, g 2 ,..., g k , g1′ , g ′2 ,..., g l′ , g1′′, g ′2′ ,..., g m
                                                                                                                                ′′ } 
      
      
      °º}ÈÎËä ˆË¹Ë¯  ˆº ÓÈ­º¯ ªãËäËӈºm {g1, g 2 ,..., g k , g1′ , g ′2 ,..., g l′ , g1′′, g ′2′ ,..., g ′m′ }  ãÒ
               ÓˮӺÓËÏÈmÒ°Òäm Λ 
      
               cȰ°äºˆ¯ÒäÓË}ºˆº¯‚ ¯Èmӂ ӂãËmºä‚ªãËäËӈ‚ãÒÓˮӂ }ºä­ÒÓÈÒ ªˆÒ²
               ªãËäËӈºm
               

                                                                              l                k                    m
                ∑ ξ i′g i′ + ∑ ξ j g j + ∑ ξ ′p′ g ′p′ = o   
                                                                         i =1                 j =1                 p =1
               
                                                                                                   m
               ~ÈäˈÒä ˆº ¹º ¹º°ˆ¯ºËÓÒ  ~
                                              x=                                                  ∑ξ ′p′ g ′p′ ∈ Ω 2  Óº ° ¯‚º® °ˆº¯ºÓ© ªˆºˆ ÎË
                                                                                                  p =1
                                              m                           l                   k
               ªãËäËӈ ~
                        x=                  ∑ ξ ′p′ g ′p′ = −(∑ ξ i′g i′ + ∑ ξ j g j ) ∈ Ω1 
                                             p =1                       i =1                 j =1
               
               wˆº ºÏÓÈÈˈ ˆº ~
                                    x ∈Ω 1 ∩ Ω 2  Ò °ã˺mȈËã Óº m ¯ÈmËÓ°ˆmË  m°Ë
               ξ i′ = 0 , i = [1, l ] ; ξ ′p′ = 0 , p = [1, m]  k ¹º°}ºã }‚ {g1, g 2 ,..., g k }   ­ÈÏÒ° ˆº Ò m°Ë
               ξ j = 0 , j = [1, k ] ÒãÒÓË®ÓÈ«}ºä­ÒÓÈÒ«°ˆº«È«mãËmº®ȰˆÒ¯ÈmËÓ°ˆmÈ
               ˆ¯ÒmÒÈã ÓÈ« vã˺mȈËã Óº {g1 , g 2 ,..., g k , g1′ , g ′2 ,..., g l′ , g1′′, g ′2′ ,..., g ′m′ }   ãÒÓˮӺ
           ÓËÏÈmÒ°ÒäÈ«°Ò°ˆËäȪãËäËӈºm
           
           
      °jϹ‚Ó}ˆÈ°°ãË‚ˈˆº {g1 , g 2 ,..., g k , g1′ , g ′2 ,..., g l′ , g1′′, g ′2′ ,..., g ′m′ } «mã«Ëˆ°«­ÈÏÒ°ºä
               m Ω1 + Ω 2 cÈÏä˯Ӻ°ˆ ¹º¹¯º°ˆ¯ÈÓ°ˆmÈ Ω1 + Ω 2 ¹¯Òªˆºä¯ÈmÓÈ
      
                                                  dim(Ω1 + Ω 2 ) = l + k + m = (k + l ) + (k + m) − k =
                                                                                                                                                                
                                                                                  = dim(Ω1 ) + dim(Ω 2 ) − dim(Ω1 ∩ Ω 2 ).
     
     ‘˺¯ËäȺ}ÈÏÈÓÈ