Аналитическая геометрия и линейная алгебра. Умнов А.Е. - 162 стр.

UptoLike

Составители: 

Рубрика: 


Ë} ÒÒ}ÈÁË ¯©m©° Ë®äÈËäÈÒ}Òlnj
ÙkÓÈãÒÒ˰}È«˺äË¯Ò«ÒãÒÓË®ÓÈ«ÈãË¯Èµ

äÓºmkp
˺¯ËäÈ

iã« }Èκº
x
Λ
¹¯ºÒmº¹ºãºÎÓ©ä ªãËäËÓºä °ãÎÒ ªãËäËÓ
()
1 x
iº}ÈÏÈËã°mº
jÏÈ}°ÒºäÈÒ}ÒãÒÓˮӺº¹¯º°¯ÈÓ°mÈÒ˺¯Ëä©ÒäËËä
xxxxxxo )1(+=)1(+1=)11(=0=
---

wº¯ÈmËÓ°mºÒºÏÓÈÈËº¹¯ºÒmº¹ºãºÎÓ©®}
x
ªãËäËÓÒäËËmÒ
()
1
x

˺¯ËäÈº}ÈÏÈÓÈ
ÒÓË®ÓÈ«ÏÈmÒ°Ò亰 ¯ÈÏä˯Ӻ° Ò ÈÏÒ° m ãÒÓˮӺä ¹¯º
°¯ÈÓ°mË
|¹¯ËËãËÓÒË

°{©¯ÈÎËÓÒË
=
n
i
ii
x
1
λ
ÓÈÏ©mÈË°« sqtnptvp rvuiqtj|qnp ªãËäËÓºm
n
xxx
,...,,
21
ãÒÓˮӺº¹¯º°¯ÈÓ°mÈ
Λ

°
wãËäËÓ©
xx x
n
12
, ,...,
ãÒÓˮӺº ¹¯º°¯ÈÓ°mÈ
Λ
ÓÈÏ©mÈ°« sq
tnptv ojkqxquuq ˰ãÒ°˰m Ò°ãÈ
λλ λ
12
, ,...,
n
ÓË ¯ÈmÓ©Ë
ÓãºÓºm¯ËäËÓÓºÈ}ÒËº
ox
n
i
ii
=
=
1
λ

°
wãËäËÓ©
xx x
n
12
, ,...,
ãÒÓˮӺº ¹¯º°¯ÈÓ°mÈ
Λ
ÓÈÏ©mÈ°« sq
tnptv tnojkqxquuq ˰ãÒ ÒÏ ¯ÈmËÓ°mÈ
ox
n
i
ii
=
=
1
λ
°ãËË º
λλ λ
12
0
====
...
n

ËääÈ

iã« ºº º© ÓË}ºº¯ºË äÓºÎ˰mº ªãËäËÓºm ãÒÓˮӺ º ¹¯º
°¯ÈÓ°mÈ©ãºãÒÓˮӺÏÈmÒ°Òä©äÓ˺²ºÒäºÒº°ÈºÓºº©
ºÒÓÒÏªÒ²ªãËäËÓºm«mã«ã°«ãÒÓˮӺ®}ºäÒÓÈÒË®º°ÈãÓ©²
iº}ÈÏÈËã°mº
iº}ÈÏÈËã°mº °ºm¹ÈÈË ° º}ÈÏÈËã°mºä ãËää©  m }ºº¯ºä °ãºmº
ÙmË}º¯µÏÈäËÓËÓº°ãºmºäÙªãËäËÓµ
 Ë }  Ò Ò    } È Á Ë  ¯ ©   m © °  Ë ®   ä È ˆ Ë ä È ˆ Ò } Ò   l n ‘ j 
ÙkÓÈã҈Ò˰}È«˺äˈ¯Ò«ÒãÒÓË®ÓÈ«ÈãË­¯ÈµäÓºmkp



  ‘˺¯ËäÈ        iã« }Èκº x ∈ Λ  ¹¯ºˆÒmº¹ºãºÎÓ©ä ªãËäËӈºä °ã‚Î҈ ªãËäËӈ
            ( −1) x 
            
   iº}ÈÏȈËã°ˆmº
          
          jÏÈ}°ÒºäȈÒ}ÒãÒÓˮӺº¹¯º°ˆ¯ÈÓ°ˆmÈ҈˺¯Ëä©ÒäËËä
          
                                                o = 0 x = (1 - 1) x = 1x + (-1) x = x + (-1) x 
                                               
        wˆº¯ÈmËÓ°ˆmºÒºÏÓÈÈˈˆº¹¯ºˆÒmº¹ºãºÎÓ©®}xªãËäËӈÒäËˈmÒ ( −1) x 
        
     ‘˺¯ËäȺ}ÈÏÈÓÈ
          
          
          
          
ÒÓË®ÓÈ« ÏÈmÒ°Ò亰ˆ  ¯ÈÏä˯Ӻ°ˆ  Ò ­ÈÏÒ° m ãÒÓˮӺä ¹¯º
      °ˆ¯ÈÓ°ˆmË
            
            
            
                                                     n
 |¹¯ËËãËÓÒË
 
                         °{©¯ÈÎËÓÒË             ∑ λ i xi  ÓÈÏ©mÈˈ°« sqtnptvp rvuiqtj|qnp ªãËäËӈºm
                                                     i =1
                                x1, x 2 ,..., xn ãÒÓˮӺº¹¯º°ˆ¯ÈÓ°ˆmÈΛ
                         
                         °wãËäËӈ© x1 , x 2 ,... , x n  ãÒÓˮӺº ¹¯º°ˆ¯ÈÓ°ˆmÈ Λ ÓÈÏ©mÈ ˆ°« sq
                              tnptv ojkqxqu€uq ˰ãÒ °‚Ë°ˆm‚ ˆ Ò°ãÈ λ1 , λ 2 ,..., λ n  ÓË ¯ÈmÓ©Ë
                                                                                       n
                                ӂã ºÓºm¯ËäËÓÓºˆÈ}Òˈº                       ∑ λ i xi = o 
                                                                                      i =1
                         °wãËäËӈ© x1 , x 2 ,... , x n  ãÒÓˮӺº ¹¯º°ˆ¯ÈÓ°ˆmÈ Λ ÓÈÏ©mÈ ˆ°« sq
                                                                                                         n
                                tnptv tnojkqxqu€uq ˰ãÒ ÒÏ ¯ÈmËÓ°ˆmÈ                              ∑ λ i xi = o  °ãË‚ˈ ˆº
                                                                                                        i =1
                                λ1 = λ2 =... = λn = 0 
            
            
            
 ËääÈ                  iã« ˆºº ˆº­© ÓË}ºˆº¯ºË äÓºÎ˰ˆmº ªãËäËӈºm ãÒÓˮӺº ¹¯º
                  °ˆ¯ÈÓ°ˆmÈ­©ãºãÒÓˮӺÏÈmÒ°Òä©äÓ˺­²ºÒäºÒº°ˆÈˆºÓºˆº­©
                         ºÒÓÒϪˆÒ²ªãËäËӈºm«mã«ã°«ãÒÓˮӺ®}ºä­ÒÓÈÒË®º°ˆÈã Ó©²
            
            
  iº}ÈÏȈËã°ˆmº
   
      iº}ÈÏȈËã °ˆmº °ºm¹ÈÈˈ ° º}ÈÏȈËã °ˆmºä ãËää©  m }ºˆº¯ºä °ãºmº
      ÙmË}ˆº¯µÏÈäËÓËÓº°ãºmºäÙªãËäËӈµ