Аналитическая геометрия и линейная алгебра. Умнов А.Е. - 181 стр.

UptoLike

Составители: 

Рубрика: 

cÈÏËã


ÒÓˮөËÏÈmÒ°Ò亰ÒmãÒÓˮӺä¹¯º°¯ÈÓ°mË
°{ ¹¯º°¯ÈÓ°mË ˰}ºÓËÓº ÒÁÁ˯ËÓÒ¯Ë䩲 ÁÓ}Ò® ãÒÓË®
Ó©äº¹Ë¯Èº¯ºä«mã«Ë°«º¹Ë¯ÈÒ«ÒÁÁ˯ËÓÒ¯ºmÈÓÒ«°Èm«È«
m °ººmË°mÒË }Èκä ªãËäËÓ ªºº ¹¯º°¯ÈÓ°mÈ ˺ ¹¯ºÒÏ
ÓÁÓ}Ò
°{¹¯º°¯ÈÓ°mËäÓººãËÓºm
P
n
()
τ
ãÒÓˮөäº¹Ë¯Èº¯ºä«mã«Ë°«
º¹Ë¯ÈÒ«äÓºÎËÓÒ«äÓººãËÓÈÓÈÓËÏÈmÒ°Òä¹Ë¯ËäËÓÓ
τ

ÈÈ

bvrjojz·zvvwnéjzvékwéqunéj}°°q°¹ks¹ízx¹sqtnptuq
ÈÈ

ks¹nzx¹ sq sqtnptu vwnéjzvé
A
 xzjk¹qp rjlvuy ësnuntzy
Λx
kxvvzknzxzkqn{qrxqévkjttpësnuntz
Λa
"
ËÓÒË
p°ãÒ
oa
=
º
A
ãÒÓˮө®º¹Ë¯Èº¯Ë®°mÒ®m
Λ
iË®°mÒ«°ãÒÓˮөäÒº¹Ë¯Èº¯ÈäÒ
|¹¯ËËãËÓÒË

ÒÓˮөË º¹Ë¯Èº¯©
A
Ò
B
ÓÈÏ©mÈ°« éjktuq ˰ãÒ
xBxAx
ˆ
ˆ
: =Λ
cÈmËÓ°mºº¹Ë¯Èº¯ºmººÏÓÈÈË°«}È}
BA
ˆ
ˆ
=

fyuuvpãÒÓˮө²º¹Ë¯Èº¯ºm
A
Ò
B
ÓÈÏ©mÈË°«º¹Ë¯Èº¯
C
ººÏÓÈ
ÈËä©®
AB+
 °Èm«Ò® }Èκä ªãËäËÓ ãÒÓˮӺº ¹¯º°¯ÈÓ°mÈ
Λx
m°ººmË°mÒËªãËäËÓ

Ax Bx+

ËääÈ

vääÈm²ãÒÓˮө²º¹Ë¯Èº¯ºm«mã«Ë°«ãÒÓˮөäº¹Ë¯Èº¯ºä
iº}ÈÏÈËã°mº
°
Λzyx ,,
Ò
zyx
µλ
+=
È

CAB=+
ºÈ

()
()
()

(

)(

)

.
Cy z Ay z By z
Ay A z B y B z
Ay B y A z B z Cy C z
λµ λµ λµ
λµλµ
λµλµ
+= + + + =
=+++=
=+++=+
ËääÈº}ÈÏÈÓÈ

cÈÏËã 
ÒÓˮөËÏÈmÒ°Ò亰ˆÒmãÒÓˮӺ乯º°ˆ¯ÈÓ°ˆmË



                           °{ ¹¯º°ˆ¯ÈÓ°ˆmË ­Ë°}ºÓËÓº ÒÁÁ˯ËÓÒ¯‚Ë䩲 Á‚Ó}Ò® ãÒÓË®
                                ө亹˯Ȉº¯ºä«mã«Ëˆ°«º¹Ë¯ÈÒ«ÒÁÁ˯ËÓÒ¯ºmÈÓÒ«°ˆÈm«È«
                                m °ººˆmˈ°ˆmÒË }ÈÎºä‚ ªãËäËӈ‚ ªˆºº ¹¯º°ˆ¯ÈÓ°ˆmÈ Ëº ¹¯ºÒÏ
                                mºӂ Á‚Ó}Ò 
                            
                           °{¹¯º°ˆ¯ÈÓ°ˆmËäÓººãËÓºm Pn (τ ) ãÒÓˮө亹˯Ȉº¯ºä«mã«Ëˆ°«
                                  º¹Ë¯ÈÒ«‚äÓºÎËÓÒ«äÓººãËÓÈÓÈÓËÏÈmÒ°Òä‚ ¹Ë¯ËäËÓӂ τ 
              
              
    ~ÈÈÈ                bvrjojz·zvvwnéjzvé€kwéqunéj}°°q°¹ks¹ízx¹sqtnpt€uq
    
              
              
    ~ÈÈÈ                ‰ks¹nzx¹ sq sqtnpt€u vwnéjzvé A   xzjk¹qp rj lvuy ësnuntzy
                    x ∈ Λ kxvvzknzxzkqn{qrxqévkjtt€pësnuntz a ∈ Λ "
              
              
    cËËÓÒË              p°ãÒ a = o ˆº A ãÒÓˮө®º¹Ë¯Èˆº¯Ë®°ˆm‚ Ò®m Λ 
              
              
              
              
iË®°ˆmÒ«°ãÒÓˮөäÒº¹Ë¯Èˆº¯ÈäÒ
              
              
              
    |¹¯ËËãËÓÒË           ÒÓˮөË              º¹Ë¯Èˆº¯©              A      Ò      B     ÓÈÏ©mÈ ˆ°«               éjkt€uq            ˰ãÒ
    
                           ∀x ∈ Λ : Aˆ x = Bˆ x cÈmËÓ°ˆmºº¹Ë¯Èˆº¯ºmº­ºÏÓÈÈˈ°«}È} Aˆ = Bˆ 
                           
                           fyuuvpãÒÓˮө²º¹Ë¯Èˆº¯ºm A Ò B ÓÈÏ©mÈˈ°«º¹Ë¯Èˆº¯ C º­ºÏÓÈ
                           ÈËä©® A + B  °ˆÈm«Ò® }ÈÎºä‚ ªãËäËӈ‚ ãÒÓˮӺº ¹¯º°ˆ¯ÈÓ°ˆmÈ
                                                           + Bx
                           x ∈ Λ m°ººˆmˈ°ˆmÒ˪ãËäËӈ Ax   
              
              
    ËääÈ                 v‚ääÈm‚²ãÒÓˮө²º¹Ë¯Èˆº¯ºm«mã«Ëˆ°«ãÒÓˮө亹˯Ȉº¯ºä
    
           
     iº}ÈÏȈËã°ˆmº
      
           ‚°ˆ x, y, z ∈ Λ Ò x = λy + µz  È C = A + B ˆºÈ
           
                                        C ( λ y + µz ) = A ( λ y + µ z ) + B ( λ y + µ z ) =
                            = λ Ay + µA z + λB y + µB z =                      
                                                        = λ ( Ay + B y ) + µ ( A z + B z ) = λ Cy
                                                                                                    + µC z .
      
      ËääȺ}ÈÏÈÓÈ