Аналитическая геометрия и линейная алгебра. Умнов А.Е. - 182 стр.

UptoLike

Составители: 

Рубрика: 


Ë} ÒÒ}ÈÁË ¯©m©° Ë®äÈËäÈÒ}Òlnj
ÙkÓÈãÒÒ˰}È«˺äË¯Ò«ÒãÒÓË®ÓÈ«ÈãË¯Èµ

äÓºmkp
|¹¯ËËãËÓÒË

Ëysnkuº¹Ë¯Èº¯ºä
O
ÓÈÏ©mÈË°«º¹Ë¯Èº¯°Èm«Ò®}ÈκäªãË
äËÓ ãÒÓˮӺº ¹¯º°¯ÈÓ°mÈ
Λx
m °ººmË°mÒË ÓãËmº® ªãËäËÓ
ªººãÒÓˮӺº¹¯º°¯ÈÓ°mÈ
|¹¯ËËãËÓÒË

|¹Ë¯Èº¯ºä wévzqkvwvsvtu º¹Ë¯Èº¯
A
 ÓÈÏ©mÈË°« º¹Ë¯Èº¯
ººÏÓÈÈËä©®
A
ˆ
°Èm«Ò®}ÈκäªãËäËÓãÒÓˮӺº¹¯º°¯ÈÓ°m
È
Λ
x
m°ººmË°mÒËªãËäËÓ
)
ˆ
( xA

~ÈäËÒäºÓãËmº®Ò¹¯ºÒmº¹ºãºÎÓ©®º¹Ë¯Èº¯©«mã«°«ãÒÓˮөäÒ
Ë}º¹¯ºm˯«°«°ãËÒË¯ÈmËÓ°mÈã«ãÒÓˮө²º¹Ë¯Èº¯ºm
 
;
(

)

(

);

;
(
)
.
AB BA
AB C A BC
AO A A A O
+=+
++=++
+= + =
|¹¯ËËãËÓÒË

ÍévqoknlntqnuãÒÓˮӺºº¹Ë¯Èº¯È
A
ÓÈÒ°ãº
λ
ÓÈÏ©mÈ˰«º¹Ë¯È
º¯ ººÏÓÈÈËä©®
A
ˆ
λ
 °Èm«Ò® }Èκä ªãËäËÓ ãÒÓˮӺº ¹¯º
°¯ÈÓ°mÈ
Λx
m°ººmË°mÒËªãËäËÓ
)
ˆ
(
xA
λ

ËääÈ

¯ºÒÏmË
ËÓÒË ãÒÓˮӺ
º º¹Ë¯Èº¯È ÓÈ
Ò°ãº «mã«Ë°« ãÒÓˮөä
º¹Ë¯Èº¯ºäã«}ºº¯ººm©¹ºãÓ«°«°ººÓºËÓÒ«
αβ αβ
αβ α β
ααα
(
)( )
;

;
()

;
(

)

.
AAAA
AAA
AB A B
==
+=+
+= +
1
iº}ÈÏÈËã°mº
m˯ÎËÓÒËãËää©¹¯ºm˯«Ë°«Ó˹º°¯Ë°mËÓÓºsȹ¯Òä˯ã«¯Ë˺¯È
mËÓ°mÈÒäËËä
∀∈ + = + = + = +
x Ax A x A x x Ax Ax
Λ
:( )

(( ) )
()

αβ αβ α β α β

˺¯ËäÈ

lÓºÎ˰mº m°Ë² ãÒÓˮө² º¹Ë¯Èº¯ºm
Ë®°m
Ò² m ãÒÓˮӺä
¹¯º°¯ÈÓ°mË
Λ
«mã«Ë°«ãÒÓˮөä¹¯º°¯ÈÓ°mºä
iº}ÈÏÈËã°mº
vãËËÒÏº¹¯ËËãËÓÒ®ÒãËää
 Ë }  Ò Ò    } È Á Ë  ¯ ©   m © °  Ë ®   ä È ˆ Ë ä È ˆ Ò } Ò   l n ‘ j 
ÙkÓÈã҈Ò˰}È«˺äˈ¯Ò«ÒãÒÓË®ÓÈ«ÈãË­¯ÈµäÓºmkp



 |¹¯ËËãËÓÒË            Ëysnk€uº¹Ë¯Èˆº¯ºä O ÓÈÏ©mÈˈ°«º¹Ë¯Èˆº¯°ˆÈm«Ò®}Èκ䂪ãË
 
                         äËӈ‚ ãÒÓˮӺº ¹¯º°ˆ¯ÈÓ°ˆmÈ x ∈ Λ  m °ººˆmˈ°ˆmÒË ӂãËmº® ªãËäËӈ
                         ªˆººãÒÓˮӺº¹¯º°ˆ¯ÈÓ°ˆmÈ
            
            
            
 |¹¯ËËãËÓÒË            |¹Ë¯Èˆº¯ºä wévzqkvwvsv t€u º¹Ë¯Èˆº¯‚ A  ÓÈÏ©mÈˈ°« º¹Ë¯Èˆº¯
 
                         º­ºÏÓÈÈËä©® −  °ˆÈm«Ò®}Èκ䂪ãËäËӈ‚ãÒÓˮӺº¹¯º°ˆ¯ÈÓ°ˆmÈ
                         x ∈ Λ m°ººˆmˈ°ˆmÒ˪ãËäËӈ (− Aˆ x ) 
            
            
            ~ÈäˈÒ䈺ӂãËmº®Ò¹¯ºˆÒmº¹ºãºÎÓ©®º¹Ë¯Èˆº¯©«mã« ˆ°«ãÒÓˮөäÒ
            
            
            Ë}º¹¯ºm˯« ˆ°«°ãË‚ Ò˯ÈmËÓ°ˆmÈã«ãÒÓˮө²º¹Ë¯Èˆº¯ºm
            
                                                        A + B = B + A ;
                                                       ( A + B ) + C = A + ( B + C ) ;           
                                                       A + O = A ;          A + ( − A ) = O .
            
            
 |¹¯ËËãËÓÒË            ÍévqoknlntqnuãÒÓˮӺºº¹Ë¯Èˆº¯È A ÓÈҰ㺠λÓÈÏ©mÈˈ°«º¹Ë¯È
 
                         ˆº¯ º­ºÏÓÈÈËä©® λ  °ˆÈm«Ò® }ÈÎºä‚ ªãËäËӈ‚ ãÒÓˮӺº ¹¯º
                         °ˆ¯ÈÓ°ˆmÈ x ∈ Λ m°ººˆmˈ°ˆmÒ˪ãËäËӈ λ ( Aˆ x ) 
            
            
 ËääÈ                  ¯ºÒÏmËËÓÒË ãÒÓˮӺº º¹Ë¯Èˆº¯È ÓÈ Ò°ãº «mã«Ëˆ°« ãÒÓˮөä
                  º¹Ë¯Èˆº¯ºäã«}ºˆº¯ººm©¹ºãÓ« ˆ°«°ººˆÓºËÓÒ«
                        
                                                            α ( β A ) = (α β ) A ; 1 A = A ;
                                                           (α + β ) A = α A + β A ;           
                                                           α ( A + B ) = α A + α B .
        
  iº}ÈÏȈËã°ˆmº
   
      ˆm˯ÎËÓÒËãËä䩹¯ºm˯«Ëˆ°«Ó˹º°¯Ë°ˆmËÓÓºsȹ¯Òä˯㫈¯Ëˆ ˺¯È
                                           = A ((α + β ) x ) = A (αx + βx ) = αAx
         mËÓ°ˆmÈÒäËËä ∀x ∈ Λ : (α + β ) Ax                                       + βAx
                                                                                        
          
          
 ‘˺¯ËäÈ        lÓºÎ˰ˆmº m°Ë² ãÒÓˮө² º¹Ë¯Èˆº¯ºm Ë®°ˆm‚ Ò² m ãÒÓˮӺä
          ¹¯º°ˆ¯ÈÓ°ˆmË Λ «mã«Ëˆ°«ãÒÓˮө乯º°ˆ¯ÈÓ°ˆmºä
          
  iº}ÈÏȈËã°ˆmº
    
         vãË‚ˈÒϺ¹¯ËËãËÓÒ®ÒãËää