Аналитическая геометрия и линейная алгебра. Умнов А.Е. - 184 стр.

UptoLike

Составители: 

Рубрика: 


Ë} ÒÒ}ÈÁË ¯©m©° Ë®äÈËäÈÒ}Òlnj
ÙkÓÈãÒÒ˰}È«˺äË¯Ò«ÒãÒÓË®ÓÈ«ÈãË¯Èµ

äÓºmkp
ÈÈ

Æ sqtnptvu wévxzéjtxzkn jsmniéjq·nxrq} utvmv·sntvk
P
n
()
τ
tjpzq
rvuuyzjzvéls¹vwnéjzvévk
A
xzjk¹nmvk xvvzknzxzkqn utvmv·sn
tynmvwévqokvltyí{ytr|qíq
B
vwnéjzvéjyutvntq¹utvmv·sntj
tjtnojkqxquyíwnénunttyí
ËÓÒË
º°¯ºÒäº¹Ë¯Èº¯
 
AB BA
iã«ãºº
P
n
()
τ
ÒäËËä
() () ( )
() ( ) .
AP
d
d
P
d
d
k
BP
nn k
k
k
n
k
k
k
n
nk
k
k
n
k
k
k
n
τ
τ
τ
τ
ατ ατ
ττ ατ ατ
== =
==
=
=
=
+
=
∑∑
∑∑
0
1
1
0
1
0
|}È¹ºãÈËä
(
()) ( )
(
()) ( ) ( )
BAP k k k
ABP
d
d
k
nk
k
k
n
k
k
k
n
k
k
k
n
nk
k
k
n
k
k
k
n
τ τ ατ ατ ατ
τ
τ
ατ ατ
===
==+
===
+
==
∑∑
∑∑
1
110
1
00
1
Òº}ºÓÈËãÓº
(

)()( ( ) )( ) ()
AB B A P k k P
nk
k
k
n
k
k
k
n
k
k
k
n
n
−=+ ==
===
∑∑
ταταταττ
1
000

vã˺mÈËãÓºÈÓÓ©ËãÒÓˮөËº¹Ë¯Èº¯©ÓË}ºääÒ¯
{ ¯È°°äº¯ËÓÓº® Ë ÏÈÈË  º}ÈÏÈ㺰 º Ë®°mÒË º¹Ë¯Èº¯È
 
AB BA
ÓÈãº®ªãËäËÓãÒÓˮӺº¹¯º°¯ÈÓ°mÈäÓººãËÓºmÓË¹¯ÒmºÒ}ÒÏäË
ÓËÓÒªººªãËäËÓÈ{mËËäã«È}ººº¹Ë¯Èº¯È°¹ËÒÈãÓºËÓÈÒäËÓºmÈÓÒË
|¹¯ËËãËÓÒË

|¹Ë¯Èº¯
E
ÓÈÏ©mÈË°«nlqtq·tuÒãÒzvlnxzknttuº¹Ë¯Èº¯ºä
˰ãÒ }Èκä ªãËäËÓ ãÒÓˮӺº ¹¯º°¯ÈÓ°mÈ
Λ
x
ºÓ °ÈmÒ m
°ººmË°mÒËºÎË°Èä©®ªãËäËÓº˰
Λ= xxxE ;
ˆ

iº}ÈÎÒË °È亰º«ËãÓº °¹¯ÈmËãÒmº° °ººÓºËÓÒ®

,
AE EA A A
==
 È
È}ÎËãÒÓˮӺ°ÒËÒÓ°mËÓÓº°º¹Ë¯Èº¯È
E

 Ë }  Ò Ò    } È Á Ë  ¯ ©   m © °  Ë ®   ä È ˆ Ë ä È ˆ Ò } Ò   l n ‘ j 
ÙkÓÈã҈Ò˰}È«˺äˈ¯Ò«ÒãÒÓË®ÓÈ«ÈãË­¯ÈµäÓºmkp



  ~ÈÈÈ           Æ sqtnptvu wévxzéjtxzkn jsmniéjq·nxrq} utvmv·sntvk Pn (τ )  tjpzq
  
                    rvuuyzjzvé ls¹ vwnéjzvévk A  xzjk¹nmv k xvvzknzxzkqn utvmv·sn
                         tynmvwévqokvltyí{ytr|qíq B vwnéjzvéjyutv ntq¹utvmv·sntj
                         tjtnojkqxquyíwnénunttyí
            
                                                                                               
 cËËÓÒË               º°ˆ¯ºÒ亹˯Ȉº¯ A B − B A iã«ã ­ºº Pn (τ ) ÒäËËä
                         
                                                            d            d n              n
                                                 
                                                 APn (τ ) =    Pn (τ ) =   ( ∑ α k τ ) = ∑ kα k τ k −1
                                                                                    k
                                                            dτ           dτ k = 0        k =1
                                                                      n                   n
                                                                                                                         
                                                  (τ ) = τ ( ∑ α τ k ) = ∑ α τ k +1
                                                 BP                                                    .
                                                   n             k           k
                                                                    k =0              k =0
                                                                                      
                         |ˆ}‚ȹºã‚ÈËä
                         
                                                                            n                  n                n
                                                       (τ )) = τ ( ∑ kα τ k −1 ) = ∑ kα τ k = ∑ kα τ k
                                                 B ( APn               k               k          k
                                                                           k =1               k =1             k =0
                                                                                  n              n
                                                                                                                              
                                                       (τ )) = d ( ∑ α τ k +1 ) = ∑ ( k + 1)α τ k
                                                 A ( BPn
                                                                dτ k = 0 k         k =0
                                                                                              k

                                                                                      
                         Òº}ºÓȈËã Óº
                         
                                                                n                              n                 n
                                    − B A ) P (τ ) = ( ∑ ( k + 1)α τ k ) − ( ∑ kα τ k ) = ∑ α τ k = P (τ ) 
                                ( AB             n                    k              k           k       n
                                                               k =0                           k =0              k =0
                         
                         vã˺mȈËã ÓºÈÓÓ©ËãÒÓˮө˺¹Ë¯Èˆº¯©ÓË}ºä䂈ү‚ ˆ
            
            
            
            { ¯È°°äºˆ¯ËÓÓº® m© Ë ÏÈÈË  º}ÈÏÈ㺰  ˆº Ë®°ˆmÒË º¹Ë¯Èˆº¯È
A B − B A ÓÈã ­º®ªãËäËӈãÒÓˮӺº¹¯º°ˆ¯ÈÓ°ˆmÈäÓººãËÓºmÓ˹¯Òmº҈}ÒÏäË
ÓËÓÒ ªˆººªãËäËӈÈ{mËËä㫈È}ººº¹Ë¯Èˆº¯È°¹ËÒÈã ÓºËÓÈÒäËÓºmÈÓÒË
       
       
       
 |¹¯ËËãËÓÒË            |¹Ë¯Èˆº¯ E ÓÈÏ©mÈˈ°«nlqtq·t€u ÒãÒzv lnxzkntt€u º¹Ë¯Èˆº¯ºä
                  ˰ãÒ }ÈÎºä‚ ªãËäËӈ‚ ãÒÓˮӺº ¹¯º°ˆ¯ÈÓ°ˆmÈ ∀x ∈ Λ  ºÓ °ˆÈm҈ m
                         °ººˆmˈ°ˆmÒˈºˆÎ˰Èä©®ªãËäËӈˆº˰ˆ  Eˆ x = x ; ∀x ∈ Λ 
            
            
                                                                      = EA
            iº}ÈÎ҈Ë °È亰ˆº«ˆËã Óº °¹¯ÈmËãÒmº°ˆ  °ººˆÓº ËÓÒ® AE      = A ,                                                   ∀A  È
ˆÈ}ÎËãÒÓˮӺ°ˆ ÒËÒÓ°ˆmËÓÓº°ˆ º¹Ë¯Èˆº¯È E