Аналитическая геометрия и линейная алгебра. Умнов А.Е. - 186 стр.

UptoLike

Составители: 

Рубрика: 


Ë} ÒÒ}ÈÁË ¯©m©° Ë®äÈËäÈÒ}Òlnj
ÙkÓÈãÒÒ˰}È«˺äË¯Ò«ÒãÒÓË®ÓÈ«ÈãË¯Èµ

äÓºmkp
zºº¯ÒÓÈÓºË¹¯Ë°ÈmãËÓÒËãÒÓˮө²º¹Ë¯Èº¯ºm
°m
n
Λ
ÏÈÈÓ© ÈÏÒ°
},...,,{
21
n
ggg
Ò ãÒÓˮө® º¹Ë¯Èº¯
A
°ºãȰ
ÏÓÈËÓÒ® m
n
Λ
 r©ãº ¹º}ÈÏÈÓº º
n
x
Λ
°˰mË ËÒÓ°mËÓÓºË ¯ÈÏãºÎËÓÒË
=
=
n
i
ii
gx
1
ξ
 sÈ®Ëä ¯ÈÏãºÎËÓÒË ªãËäËÓÈ
xA
ˆ
¹ºÈÓÓºä ÈÏÒ°
==
==
n
i
ii
n
i
ii
gAgAxA
11
ˆ
)(
ˆˆ
ξ
ξ
ã«˺º°ÈºÓº¯ÈÏãºÎÒ¹ºÈÏÒ°ªãËäËÓ©
i
gA
ˆ
¹º
ãÒmÓȹ¯Òä˯
],1[,
ˆ
1
niggA
n
k
kkii
==
=
α

|¹¯ËËãËÓÒË

lÈ¯ÒÈ°ºã©}ºº¯º®º¯ÈϺmÈÓ©}ºä¹ºÓËÓÈäÒªãËäËÓºm
i
gA
ˆ
,
...
...
... ... ... ...
...
A
g
n
n
nn nn
=
αα α
αα α
αα α
11 12 1
21 22 2
12
ÓÈÏ©mÈË°« ujzéq|np sqtnptvmv vwnéjzvéj
A
m ÈÏÒ°Ë
n
n
ggg
Λ},...,,{
21

|äËÒäºÈ}äÈ¯ÒäºÎÓº¹º°ÈmÒm°ººmË°mÒËÒ¹¯ÒºäËÒÓ°mËÓÓ©ä
º¯ÈϺä}ÈκäãÒÓˮӺäº¹Ë¯Èº¯m
n
Λ

¯Ò¹ºäºÒäÈ¯Ò©ãÒÓˮӺºº¹Ë¯Èº¯ÈäºÎÓºÓȲºÒ}ºº¯ÒÓÈ©º¯È
ϺmªãËäËÓºmãÒÓˮӺº¹¯º°¯ÈÓ°mÈ
°}ºº¯ÒÓÈÓºË¯ÈÏãºÎËÓÒËº¯ÈÏÈªãËäËÓÈ
x
ÒäËËmÒ
Ax g
kk
k
n
=
=
η
1
v
¯º®°º¯ºÓ©
∑∑∑∑∑∑
=======
====
n
k
kiki
n
i
n
k
kki
n
i
i
n
i
n
k
kkii
n
i
ii
ggggAxA
1111111
)(
ˆˆ
ξ
αα
ξ
α
ξ
ξ

v¯ÈmÓÒmÈ«ºÈ¹ºãËÓÓ©²¹¯Ë°ÈmãËÓÒ«ã«
xA
ˆ
ÒÒ°¹ºãÏ«ãÒÓË®ÓÓËÏÈmÒ°Ò亰
ªãËäËÓºm
},...,,{
21
n
ggg
¹¯Ò²ºÒä}m©¯ÈÎËÓÒ
],1[,
1
nk
n
i
ikik
==
=
ξ
αη
{äÈ¯ÒÓº®
Áº¯äË¹ºãËÓÓ©Ë°ººÓºËÓÒ«ÒäËmÒ
 Ë }  Ò Ò    } È Á Ë  ¯ ©   m © °  Ë ®   ä È ˆ Ë ä È ˆ Ò } Ò   l n ‘ j 
ÙkÓÈã҈Ò˰}È«˺äˈ¯Ò«ÒãÒÓË®ÓÈ«ÈãË­¯ÈµäÓºmkp



zºº¯ÒÓȈӺ˹¯Ë°ˆÈmãËÓÒËãÒÓˮө²º¹Ë¯Èˆº¯ºm
             
             
             
             ‚°ˆ  m Λn  ÏÈÈÓ© ­ÈÏÒ° {g1, g 2 ,..., g n }  Ò ãÒÓˮө® º¹Ë¯Èˆº¯ A  ° º­ãȰˆ                                          
ÏÓÈËÓÒ® m Λn  r©ãº ¹º}ÈÏÈÓº ˆº ∀x ∈ Λn  °‚Ë°ˆm‚ˈ ËÒÓ°ˆmËÓÓºË ¯ÈÏãºÎËÓÒË
       n
x = ∑ ξ i g i          sÈ®Ëä                  ¯ÈÏãºÎËÓÒË              ªãËäËӈÈ        Âx        ¹º      ÈÓÓºä‚             ­ÈÏÒ°‚
      i =1
              n               n
Aˆ x = Aˆ (∑ ξ i g i ) = ∑ ξ i Aˆ g i ã«Ëºº°ˆÈˆºÓº¯ÈÏãºÎ҈ ¹º­ÈÏÒ°‚ªãËäËӈ© Âg i ¹º
             i =1            i =1
                                            n
ã‚ÒmÓȹ¯Òä˯ Aˆ g i =                 ∑α ki g k ,     ∀i = [1, n] 
                                           k =1
             
             
 |¹¯ËËãËÓÒË            lȈ¯ÒȰˆºã­©}ºˆº¯º®º­¯ÈϺmÈÓ©}ºä¹ºÓËӈÈäÒªãËäËӈºm Âg i ,
 
                               
                                                                             α11 α12           ... α1n
                                                                             α 21 α 22         ... α 2 n
                                                                  A       =                                
                                                                       g      ...  ...         ... ...
                                                                             α n1 α n 2        ... α nn
                         
                         ÓÈÏ©mÈˈ°«                ujzéq|np              sqtnptvmv          vwnéjzvéj            A     m       ­ÈÏÒ°Ë
                         {g1 , g 2 ,..., g n }∈ Λ   n

      
      
|ˆäˈÒ䈺ˆÈ}‚ äȈ¯Ò‚äºÎÓº¹º°ˆÈm҈ m°ººˆmˈ°ˆmÒËÒ¹¯ÒˆºäËÒÓ°ˆmËÓÓ©ä
º­¯ÈϺä}Èκä‚ãÒÓˮӺ䂺¹Ë¯Èˆº¯‚m Λn 
        
        ¯Ò¹ºäºÒäȈ¯Ò©ãÒÓˮӺºº¹Ë¯Èˆº¯ÈäºÎÓºÓȲº҈ }ºº¯ÒÓȈ©º­¯È
ϺmªãËäËӈºmãÒÓˮӺº¹¯º°ˆ¯ÈÓ°ˆmÈ
                                                                                                                                  n
                                                                            = ∑ η g v
             ‚°ˆ }ºº¯ÒÓȈӺ˯ÈÏãºÎËÓÒ˺­¯ÈÏȪãËäËӈÈ xÒäËˈmÒ Ax     k k
                                                                                                                               k =1
¯‚º®°ˆº¯ºÓ©
                                     n               n      n                n   n                  n   n
                         Aˆ x = ∑ ξ i Aˆ g i = ∑ ξ i ∑α ki g k = ∑∑ ξ iα ki g k = ∑∑ (α kiξ i ) g k 
                                    i =1            i =1   k =1             k =1i =1             k =1i =1
             
v¯ÈmÓÒmÈ«º­È¹ºã‚ËÓÓ©²¹¯Ë°ˆÈmãËÓÒ«ã« Âx ÒÒ°¹ºã ς«ãÒÓˮӂ ÓËÏÈmÒ°Ò亰ˆ 
                                                                                           n
ªãËäËӈºm {g1, g 2 ,..., g n } ¹¯Ò²ºÒä}m©¯ÈÎËÓÒ  ηk =                              ∑α kiξ i ,        ∀k = [1, n] {äȈ¯ÒÓº®
                                                                                          i =1
Áº¯ä˹ºã‚ËÓө˰ººˆÓº ËÓÒ«ÒäË ˆmÒ