Аналитическая геометрия и линейная алгебра. Умнов А.Е. - 188 стр.

UptoLike

Составители: 

Рубрика: 


Ë} ÒÒ}ÈÁË ¯©m©° Ë®äÈËäÈÒ}Òlnj
ÙkÓÈãÒÒ˰}È«˺äË¯Ò«ÒãÒÓË®ÓÈ«ÈãË¯Èµ

äÓºmkp
++=
++=
++=
3213
3212
3211
000
ˆ
010
ˆ
001
ˆ
ggggA
ggggA
ggggA
º
A
g
=
100
010
000

iË®°mÒ«°ãÒÓˮөäÒº¹Ë¯Èº¯ÈäÒmäÈ¯ÒÓº®Áº¯äË
{mËËÓÓ©Ëm¹Ò¹º¹Ë¯ÈÒÒã«äÈ¯Ò¹ºÏmºã«º¹Ò°Èm}ºÓ}¯Ë
ÓºäÈÏÒ°ËË®°mÒ«°ãÒÓˮөäÒº¹Ë¯Èº¯ÈäÒm°ãËË®Áº¯äË
°
vãºÎËÓÒËº¹Ë¯Èº¯ºm

AB A B
ggg
+= +

iË®°mÒËãÓºÒÏ
=
=
n
k
kkii
ggA
1
ˆ
α
Ò
=
=
n
k
kkii
ggB
1
ˆ
β
°ãËËº
===
+=+=+=+
n
k
kkiki
n
k
kki
n
k
kkiiii
ggggBgAgBA
111
)(
ˆ
ˆ
)
ˆ
ˆ
(
βαβα

°

äÓºÎËÓÒËº¹Ë¯Èº¯ÈÓÈÒ°ãº
λλ

AA
gg
=

jÏ
=
=
n
k
kkii
ggA
1
ˆ
α
ã«ãººÒ°ãÈ
λ
ÓȲºÒäº
=
==
n
k
kkiii
ggAgA
1
)()(
ˆ
)
ˆ
(
λαλλ

°

¯ºÒÏmËËÓÒËº¹Ë¯Èº¯ºm


AB A B
ggg
=

ºº¹¯ËËãËÓÒäÈ¯Ò©ãÒÓˮӺºº¹Ë¯Èº¯ÈÒäËËä
j
n
j
jij
n
j
jk
n
k
kik
n
k
kik
n
k
kiii
gggAgAgBAgBA
=====
=====
11111
ˆ
)(
ˆ
)
ˆ
(
ˆ
)
ˆ
ˆ
(
καβββ

Ë
=
=
n
k
ikjkij
1
βακ
 º °ºm¹ÈÈË ° º¹¯ËËãËÓÒËä ¹¯ºÒÏmËËÓÒ« äÈ¯Ò

 Ë }  Ò Ò    } È Á Ë  ¯ ©   m © °  Ë ®   ä È ˆ Ë ä È ˆ Ò } Ò   l n ‘ j 
ÙkÓÈã҈Ò˰}È«˺äˈ¯Ò«ÒãÒÓË®ÓÈ«ÈãË­¯ÈµäÓºmkp



                                                    →            →             →             →
                                                 Aˆ g1 = 1 g1 + 0 g 2 + 0 g 3                                                   1 0 0
                                                    →             →            →             →
                                                Aˆ g 2 = 0 g1 + 1 g 2 + 0 g 3 ˆº A                                    g
                                                                                                                              = 0 1 0 
                                                   →              →             →            →
                                                Aˆ g 3 = 0 g1 + 0 g 2 + 0 g 3                                                   0 0 0
                                      
                           
            
            
            
iË®°ˆmÒ«°ãÒÓˮөäÒº¹Ë¯Èˆº¯ÈäÒmäȈ¯ÒÓº®Áº¯äË
       
       
       {mËËÓÓ©Ëm¹Ò¹º¹Ë¯ÈÒÒã«äȈ¯Ò¹ºÏmºã« ˆº¹Ò°Èˆ m}ºÓ}¯Ëˆ
Óºä­ÈÏÒ°ËË®°ˆmÒ«°ãÒÓˮөäÒº¹Ë¯Èˆº¯ÈäÒm°ãË‚ Ë®Áº¯äË
       
       
°vãºÎËÓÒ˺¹Ë¯Èˆº¯ºm A + B                             =        A           + B              
                                                             g                  g                     g
            
                                                                      n                                            n
                       iË®°ˆm҈Ëã ÓºÒÏ Aˆ g i =                   ∑ α ki g k Ò Bˆ g i =                       ∑ β ki g k °ãË‚ˈˆº
                                                                  k =1                                           k =1
                                                                                    n                           n                     n
                                    ( Aˆ + Bˆ ) g i = Aˆ g i + Bˆ g i =         ∑ α ki g k + ∑ β ki g k = ∑ (α ki + β ki ) g k 
                                                                                k =1                           k =1                  k =1
                   
                   
°äÓºÎËÓÒ˺¹Ë¯Èˆº¯ÈÓÈҰ㺠λA                                      = λ A                    
                                                                           g                          g
                       
                                          n
                       jÏ Aˆ g i =   ∑ α ki g k ã«ã              ­ººÒ°ãÈλÓȲºÒ䈺
                                      k =1
                                                                                                               n
                                                                 (λAˆ ) g i = Aˆ (λg i ) =                 ∑ (λα ki ) g k 
                                                                                                           k =1
                   
                   
                              
°¯ºÒÏmËËÓÒ˺¹Ë¯Èˆº¯ºm AB                                 =        A            B       
                                                            g                   g            g
            
                       ºº¹¯ËËãËÓÒ äȈ¯Ò©ãÒÓˮӺºº¹Ë¯Èˆº¯ÈÒäËËä
                       
                                                        n                            n                              n          n            n
                       ( Aˆ Bˆ ) g i = Aˆ ( Bˆ g i ) = Aˆ ( ∑ β ki g k ) = ∑ β ki Aˆ g k = ∑ β ki ∑α jk g j = ∑κ ji g j 
                                                      k =1                          k =1                           k =1       j =1          j =1
                                          n
                       Ë κ j i =   ∑α jk β k i  ˆº °ºm¹ÈÈˈ ° º¹¯ËËãËÓÒËä ¹¯ºÒÏmËËÓÒ« äȈ¯Ò
                                      k =1