Аналитическая геометрия и линейная алгебра. Умнов А.Е. - 190 стр.

UptoLike

Составители: 

Рубрика: 


Ë} ÒÒ}ÈÁË ¯©m©° Ë®äÈËäÈÒ}Òlnj
ÙkÓÈãÒÒ˰}È«˺äË¯Ò«ÒãÒÓË®ÓÈ«ÈãË¯Èµ

äÓºmkp
°mºä
nn
S
ξ
ξ
ξ
ξ
ξ
ξ
=
......
2
1
2
1
È}ºä¹ºÓËÓ©º¯ÈÏÈ
nn
S
η
η
η
η
η
η
=
......
2
1
2
1

{¯È°°äÈ¯ÒmÈË䩲ÈÏҰȲº¯ÈÏ©Ò¹¯ºº¯ÈÏ©ªãËäËÓºm°m«ÏÈÓ©°ººÓºË
ÓÒ«äÒ
n
g
n
A
ξ
ξ
ξ
η
η
η
...
ˆ
...
2
1
2
1
=
Ò
n
g
n
A
ξ
ξ
ξ
η
η
η
=
...
ˆ
...
2
1
2
1
 Óº ¹º°}ºã} äÈ¯ÒÈ ¹Ë¯Ë²ºÈ
ÒäËËº¯ÈÓºÒÏm©¹Ò°ÈÓÓ©²°ººÓºËÓÒ®¹º°ã˺mÈËãÓº¹ºãÈËä
n
g
n
g
nn
SASASS
ξ
ξ
ξ
ξ
η
η
η
η
η
η
===
...
ˆ
...
ˆ
......
2
1
1
2
1
1
2
1
1
2
1

sÈ}ºÓË¹¯Ò²ºÒä}¯ÈmËÓ°m
0
...
0
0
...
)
ˆˆ
(
2
1
1
=
n
gg
SASA
ξ
ξ
ξ
ÒÏ }ºº¯ºº
m°Òã¹¯ºÒÏmºãÓº°Ò°ºãÈ
n
ξ
ξ
ξ
...
2
1
Ò ãËää© °ãËËm˯ÎËÓÒË˺
¯Ëä©
˺¯ËäÈº}ÈÏÈÓÈ
vã˰mÒË

|¹¯ËËãÒËã äÈ¯Ò© ãÒÓˮӺº º¹Ë¯Èº¯È ÓË ÏÈmÒ°Ò º m©º¯È
ÈÏÒ°È
iº}ÈÏÈËã°mº
jÏ m˯ÎËÓÒ« ˺¯Ëä©  °ãËË
det
det (
)ASAS
gg
=
1
 Óº ¹º
°}ºã}
det (
) ( det )(det
)(det )SAS S A S
gg
−−
=
11
Ò
det
det
S
S
=
1
1

 Ë }  Ò Ò    } È Á Ë  ¯ ©   m © °  Ë ®   ä È ˆ Ë ä È ˆ Ò } Ò   l n ‘ j 
ÙkÓÈã҈Ò˰}È«˺äˈ¯Ò«ÒãÒÓË®ÓÈ«ÈãË­¯ÈµäÓºmkp



                     ξ1                  ξ1′                           η1                                         η1′
                     ξ2                  ξ 2′                          η2                                         η 2′
              °ˆmºä     = S                  È}ºä¹ºÓËӈ©º­¯ÈÏÈ     = S                                         
                     ...                 ...                           ...                                        ...
                     ξn                  ξ n′                          ηn                                         η n′
              
              {¯È°°äȈ¯ÒmÈË䩲­ÈÏҰȲº­¯Èϩҹ¯ºº­¯ÈÏ©ªãËäËӈºm°m«ÏÈÓ©°ººˆÓº Ë
                          η1                 ξ1            η1′                     ξ1′
                          η2                 ξ2            η 2′                    ξ 2′
              ÓÒ«äÒ          = Aˆ                Ò           = Aˆ                     Óº ¹º°}ºã }‚ äȈ¯ÒÈ ¹Ë¯Ë²ºÈ
                          ...            g   ...           ...            g′       ...
                          ηn                 ξn            η n′                    ξ n′
              ÒäËˈº­¯ÈˆÓ‚ ˆºÒÏm©¹Ò°ÈÓÓ©²°ººˆÓº ËÓÒ®¹º°ã˺mȈËã Óº¹ºã‚ÈËä
              
                                   η1′               η1                            ξ1                                      ξ1′
                                    η 2′         −1   η2            −1              ξ2              −1                      ξ 2′
                                         = S              = S            Aˆ             = S              Aˆ         S            
                                    ...               ...                      g    ...                       g             ...
                                    η n′              ηn                            ξn                                      ξ n′
                                                                               
                                                                                                           ξ1′ 0
                                                                                         −1               ξ′   0
          sÈ}ºÓË ¹¯Ò²ºÒä } ¯ÈmËÓ°ˆm‚ ( Aˆ                               − S            Aˆ       S ) 2 =      ÒÏ }ºˆº¯ºº
                                                                         g′                        g       ... ...
                                                                                                          ξ n′ 0
                                            ξ1′
                                            ξ 2′
          m °Òã‚ ¹¯ºÒÏmºã Óº°ˆÒ °ˆºã­È       Ò ãËää©  °ãË‚ˈ ‚ˆm˯ÎËÓÒË ˆËº
                                            ...
                                            ξ n′
          ¯Ëä©
          
     ‘˺¯ËäȺ}ÈÏÈÓÈ
               
               
               
 vã˰ˆmÒË             |¹¯ËËã҈Ëã  äȈ¯Ò© ãÒÓˮӺº º¹Ë¯Èˆº¯È ÓË ÏÈmҰ҈ ºˆ m©­º¯È
                 ­ÈÏÒ°È
        
  iº}ÈÏȈËã°ˆmº
   
                                                                                                                    −1
          jÏ ‚ˆm˯ÎËÓÒ« ˆËº¯Ëä©  °ãË‚ˈ det A                                        = det ( S                A        S )  Óº ¹º
                                                                                              g′                                 g
          °}ºã }‚
          
                               −1                                 −1                                                             −1         1
                   det ( S          A       S ) = ( det S             )(det A          )(det S ) Ò det S                          =           
                                         g                                           g
                                                                                                                                          det S