Аналитическая геометрия и линейная алгебра. Умнов А.Е. - 192 стр.

UptoLike

Составители: 

Рубрика: 


Ë} ÒÒ}ÈÁË ¯©m©° Ë®äÈËäÈÒ}Òlnj
ÙkÓÈãÒÒ˰}È«˺äË¯Ò«ÒãÒÓË®ÓÈ«ÈãË¯Èµ

äÓºmkp
ÓÈÒ«ªãËäËÓºm
n
gAgAgA
ˆ
,...,
ˆ
,
ˆ
21
º˰
Λ
˰ãÒÓË®ÓÈ«ººãº}ÈäÓºÎ˰
}
ˆ
,...,
ˆ
,
ˆ
{
21
n
gAgAgA

ËãÒä ÒÏ äÓºÎ˰mÈ
}
ˆ
,...,
ˆ
,
ˆ
{
21
n
gAgAgA
äÈ}°ÒäÈãÓºË ¹ºäÓºÎ˰mº ãÒÓˮӺ
ÓËÏÈmÒ°Ò䩲ªãËäËÓºmÒ¹°Ò°ãºÒ²º}ÈÏÈ㺰¯ÈmÓ©ä
k
ºÈ¹¯ÒäËÓ««
˺¯Ëä¹¯Ò²ºÒä}ÏÈ}ãËÓÒº¯ÈÏä˯Ӻ°
Λ
*
˰
k
ÈÒÏ˺¯Ëä©
°ãËËºÒ
rg
Ak
g
=

˺¯ËäÈº}ÈÏÈÓÈ

|¹¯ËËãËÓÒË

èjtmvuãÒÓˮӺº º¹Ë¯Èº¯È
A
ÓÈÏ©mÈË°« ¯ÈÏä˯Ӻ°˺ ºãȰÒ
ÏÓÈËÓÒ®
vã˰mÒË

cÈÓãÒÓˮӺºº¹Ë¯Èº¯È
A
¯ÈmËÓ
rg
An
g
ÒÓËÏÈmÒ°Òºm©
º¯ÈÈÏÒ°È
vã˰mÒË

cÈÏä˯Ӻ°ºãȰÒÏÓÈËÓÒ®ãÒÓˮӺºº¹Ë¯Èº¯È
A
Ë®°mË
ºÓÈÓË}ºº¯ºä¹º¹¯º°¯ÈÓ°mËãÒÓˮӺº¹¯º°¯ÈÓ°mÈ
ΛΛ
ÓË
¹¯Ëmº°²º
Ò
)dim(
Λ
iº}ÈÏÈËã°mº
º°}ºã} ¹º¹¯º°¯ÈÓ°mº
Λ
«mã«Ë°« ãÒÓˮөä ¹¯º°¯ÈÓ°mºä º } ÓËä
¹¯ÒäËÓÒäÈ˺¯ËäÈ
vã˰mÒËº}ÈÏÈÓº

˺¯ËäÈ

cÈÓ ¹¯ºÒÏmËËÓÒ« ãÒÓˮө² º¹Ë¯Èº¯ºm
A
Ò
B
ÓË ¹¯Ëmº°²º Ò
¯ÈÓÈ}ÈκºÒÏªÒ²º¹Ë¯Èº¯ºm
iº}ÈÏÈËã°mº
cȰ°äº¯ÒäºãȰÏÓÈËÓÒ®ãÒÓˮӺºº¹Ë¯Èº¯È

AB
º°ã˰mÒªº
¹º¹¯º°¯ÈÓ°mºÒäËË¯ÈÏä˯Ӻ°ÓËºãËä¯ÈÏä˯Ӻ°ºãȰÒÏÓÈ
ËÓÒ®º¹Ë¯Èº¯È
B

 Ë }  Ò Ò    } È Á Ë  ¯ ©   m © °  Ë ®   ä È ˆ Ë ä È ˆ Ò } Ò   l n ‘ j 
ÙkÓÈã҈Ò˰}È«˺äˈ¯Ò«ÒãÒÓË®ÓÈ«ÈãË­¯ÈµäÓºmkp



          ÓÈÒ«ªãËäËӈºm Aˆ g1 , Aˆ g 2 ,..., Aˆ g n ˆº˰ˆ  Λ∗ ˰ˆ ãÒÓË®ÓÈ«º­ºãº}ÈäÓºÎ˰ˆ
          mÈ { Aˆ g1 , Aˆ g 2 ,..., Aˆ g n } 
          
          {©ËãÒä ÒÏ äÓºÎ˰ˆmÈ { Aˆ g1, Aˆ g 2 ,..., Aˆ g n }  äÈ}°ÒäÈã ÓºË ¹ºäÓºÎ˰ˆmº ãÒÓˮӺ
          ÓËÏÈmÒ°Ò䩲 ªãËäËӈºm Ò ¹‚°ˆ  Ұ㺠Ҳ º}ÈÏÈ㺰  ¯ÈmÓ©ä k ‘ºÈ ¹¯ÒäËÓ««
          ˆËº¯Ë䂹¯Ò²ºÒä}ÏÈ}ã ËÓÒ ˆº¯ÈÏä˯Ӻ°ˆ  Λ ˰ˆ  kÈÒψ˺¯Ëä©
                                                                       *

          °ãË‚ˈˆºÒ rg A                    = k 
                                                      g
          
     ‘˺¯ËäȺ}ÈÏÈÓÈ
          
          
          
 |¹¯ËËãËÓÒË            èjtmvu ãÒÓˮӺº º¹Ë¯Èˆº¯È A  ÓÈÏ©mÈˈ°« ¯ÈÏä˯Ӻ°ˆ  ˺ º­ãȰˆÒ
                  ÏÓÈËÓÒ®
          
          
          
 vã˰ˆmÒË               cÈÓãÒÓˮӺºº¹Ë¯Èˆº¯È A ¯ÈmËÓ rg A                                   ≤ n ÒÓËÏÈmҰ҈ºˆm©
                                                                                                   g
 
                          ­º¯È­ÈÏÒ°È
              
              
              
 vã˰ˆmÒË              cÈÏä˯Ӻ°ˆ º­ãȰˆÒÏÓÈËÓÒ®ãÒÓˮӺºº¹Ë¯Èˆº¯È A Ë®°ˆm‚ Ë
 
                         ºÓÈÓË}ºˆº¯ºä¹º¹¯º°ˆ¯ÈÓ°ˆmËãÒÓˮӺº¹¯º°ˆ¯ÈÓ°ˆmÈ Λ∗ ⊆ Λ ÓË
                         ¹¯Ëmº°²º҈ dim( Λ∗ ) 
        
  iº}ÈÏȈËã°ˆmº
   
        º°}ºã }‚ ¹º¹¯º°ˆ¯ÈÓ°ˆmº Λ∗  «mã«Ëˆ°« ãÒÓˮөä ¹¯º°ˆ¯ÈÓ°ˆmºä ˆº } ÓËä‚
        ¹¯ÒäËÓÒäȈ˺¯ËäÈ
        
     vã˰ˆmÒ˺}ÈÏÈÓº
        
        
        
 ‘˺¯ËäÈ               cÈÓ ¹¯ºÒÏmËËÓÒ« ãÒÓˮө² º¹Ë¯Èˆº¯ºm A  Ò B  ÓË ¹¯Ëmº°²º҈
                  ¯ÈÓÈ}ÈκºÒϪˆÒ²º¹Ë¯Èˆº¯ºm
              
              
  iº}ÈÏȈËã°ˆmº
   
                                                             º°ã˰ˆmÒ ªˆº
          cȰ°äºˆ¯Ò亭ãȰˆ ÏÓÈËÓÒ®ãÒÓˮӺºº¹Ë¯Èˆº¯È AB
          ¹º¹¯º°ˆ¯ÈÓ°ˆmºÒäËˈ¯ÈÏä˯Ӻ°ˆ ÓË­ºã ‚ Ëä¯ÈÏä˯Ӻ°ˆ º­ãȰˆÒÏÓÈ
          ËÓÒ®º¹Ë¯Èˆº¯È B