Аналитическая геометрия и линейная алгебра. Умнов А.Е. - 193 стр.

UptoLike

Составители: 

Рубрика: 

cÈÏËã


ÒÓˮөËÏÈmÒ°Ò亰ÒmãÒÓˮӺä¹¯º°¯ÈÓ°mË
v¯º®°º¯ºÓ©ºãȰÏÓÈËÓÒ®º¹Ë¯Èº¯È

AB
°ºË¯ÎÒ°«mºãȰÒÏÓÈ
ËÓÒ® º¹Ë¯Èº¯È
A
Ò°ã˺mÈËãÓº ¯ÈÏä˯Ӻ°ºãȰÒÏÓÈËÓÒ®

AB
ÓË
¹¯Ëmº°²ºÒ¯ÈÏä˯Ӻ°ÒºãȰÒÏÓÈËÓÒ®
A

˺¯ËäÈº}ÈÏÈÓÈ

˺¯ËäÈ

p°ãÒ }mÈ
¯ÈÓÈ« äÈ¯Ò
È
A
ÓËm©¯ºÎ
ËÓÓÈ« º
ã« ã
º® }mÈ
¯È
Óº®äÈ¯Ò©
B
ººÎË¯ÈÏä˯È
rg ( ) rg ( ) rgAB BA B
==
iº}ÈÏÈËã°mº
rËä¯È°°äÈ¯ÒmÈäÈ¯Ò©
A
Ò
B
}È}}ºº¯ÒÓÈÓ©Ë¹¯Ë°ÈmãËÓÒ«ãÒ
Óˮө²º¹Ë¯Èº¯ºm
A
Ò
B
mÓË}ºº¯ºäÈÏÒ°Ë
p°ãÒ
det A 0
 º °˰mË
A
1
Ò m °Òã ˺¯Ëä©  ÒäËËä ° ºÓº®
°º¯ºÓ©
rg( ) rgAB B
Óº°¯º®
rg rg( ) rg( )BAAB AB
=≤
1

˺¯ËäÈº}ÈÏÈÓÈ

~ÈäËÈÓÒ«

°
 p°ãÒäÈ¯ÒÈ
B
ÓË}mȯÈÓÈ«Óº°˰mËºÓºÒÏ¹¯ºÒÏmË
ËÓÒ®
AB
ÒãÒ
BA
º¹¯Ò
det A 0
È}ÎËm˯ө¯È
mËÓ°mÈ
rg( ) rgAB B=
ÒãÒ °ººmË°mËÓÓº
rg( ) rgBA B=
 { ªºä äºÎÓº ËÒ°« ÏÈäËÓÒm äÈ¯Ò
B
äÈ¯ÒË®
B
 «mã«Ë®°« º¹ºãÓËÓÒËä ÓãËm©äÒ
°ºãÈäÒ ÒãÒ ÓãËm©äÒ °¯º}ÈäÒ
B
º }mȯÈÓº® È}º©
°˰mºmÈãÒ
AB
ÒãÒ
BA
 Òº ºËmÒÓº º
rg rgBB
=

°
 cÈÓ¹¯ºÒÏmËËÓÒ«äÈ¯ÒäºÎË©äËÓË¯ÈÓºm}Èlvmv qo
°ºäÓºÎÒËãË®sȹ¯Òä˯
10
00
00
01
00
00
=

cÈÏËã 
ÒÓˮөËÏÈmÒ°Ò亰ˆÒmãÒÓˮӺ乯º°ˆ¯ÈÓ°ˆmË



                                                           °º˯Î҈°«mº­ãȰˆÒÏÓÈ
           v¯‚º®°ˆº¯ºÓ©º­ãȰˆ ÏÓÈËÓÒ®º¹Ë¯Èˆº¯È AB
                                                                                         ÓË
           ËÓÒ® º¹Ë¯Èˆº¯È A  Ò °ã˺mȈËã Óº ¯ÈÏä˯Ӻ°ˆ  º­ãȰˆÒ ÏÓÈËÓÒ® AB
         ¹¯Ëmº°²º҈¯ÈÏä˯Ӻ°ˆÒº­ãȰˆÒÏÓÈËÓÒ® A 
         
      ‘˺¯ËäȺ}ÈÏÈÓÈ
         
         
         
    ‘˺¯ËäÈ        p°ãÒ }mȯȈÓÈ« äȈ¯ÒÈ A  ÓËm©¯ºÎËÓÓÈ« ˆº ã« ã ­º® }mȯȈ
    
                     Óº®äȈ¯Ò© B ˆººÎ˯ÈÏä˯È
                                                         rg ( A         B ) = rg ( B             A ) = rg B 
           
     iº}ÈÏȈËã°ˆmº
      
           r‚Ëä¯È°°äȈ¯ÒmȈ äȈ¯Ò© A Ò B }È}}ºº¯ÒÓȈө˹¯Ë°ˆÈmãËÓÒ«ãÒ
           Óˮө²º¹Ë¯Èˆº¯ºm A Ò B mÓË}ºˆº¯ºä­ÈÏÒ°Ë
           
                                                                               −1
           p°ãÒ det A ≠ 0  ˆº °‚Ë°ˆm‚ˈ A                                      Ò m °Òã‚ ˆËº¯Ëä©  ÒäËËä ° ºÓº®
           °ˆº¯ºÓ© rg ( A                B ) ≤ rg B Óº°¯‚º®
           
                                                                         −1
                                               rg B = rg ( A                      A      B ) ≤ rg ( A          B ) 
           
      ‘˺¯ËäȺ}ÈÏÈÓÈ
           
           
~ÈäËÈÓÒ«°             p°ãÒäȈ¯ÒÈ B ÓË}mȯȈÓȫӺ°‚Ë°ˆm‚ˈºÓºÒϹ¯ºÒÏmË
                                    ËÓÒ®           A    B ÒãÒ B                    A ˆº¹¯Ò det A ≠ 0 ˆÈ}ÎËm˯ө¯È
                                    mËÓ°ˆmÈ                  rg ( A          B ) = rg B                    ÒãÒ              °ººˆmˈ°ˆmËÓÓº
                                     rg ( B          A ) = rg B  { ªˆºä äºÎÓº ‚­Ë҈ °« ÏÈäËÓÒm äȈ¯Ò‚
                                                                              ∗
                                       B  äȈ¯ÒË®                     B            «mã« Ë®°«            º¹ºãÓËÓÒËä                ӂãËm©äÒ
                                    °ˆºã­ÈäÒ ÒãÒ ӂãËm©äÒ °ˆ¯º}ÈäÒ B  º }mȯȈӺ® ˆÈ} ˆº­©
                                                                                  ∗                     ∗
                                    °‚Ë°ˆmºmÈãÒ                   A      B            ÒãÒ      B         A  Ò­º ºËmÒÓº ˆº
                                                 ∗
                                     rg B            = rg B 
                                                           
                           ° cÈÓ ¹¯ºÒÏmËËÓÒ« äȈ¯Ò äºÎˈ ­©ˆ  äËÓ                                           Ë ¯ÈÓºm }È lvmv qo
                                 °ºäÓºÎ҈ËãË®sȹ¯Òä˯


                                                                                  1 0      0 0           0 0
                                                                                                    =              
                                                                                  0 0      0 1           0 0