Аналитическая геометрия и линейная алгебра. Умнов А.Е. - 194 стр.

UptoLike

Составители: 

Рубрика: 


Ë} ÒÒ}ÈÁË ¯©m©° Ë®äÈËäÈÒ}Òlnj
ÙkÓÈãÒÒ˰}È«˺äË¯Ò«ÒãÒÓË®ÓÈ«ÈãË¯Èµ

äÓºmkp
i¯º® mÈÎÓº® ²È¯È}˯ҰÒ}º® ãÒÓˮӺº º¹Ë¯Èº¯È «mã«Ë°« °ºmº}¹Óº°
ªãËäËÓºmãÒÓˮӺº¹¯º°¯ÈÓ°mÈ
Λ
ÓÈÏ©mÈËäÈ«¹lévuãÒÓˮӺºº¹Ë¯Èº¯ÈÒºº
ÏÓÈÈËäÈ«
ker
A

|¹¯ËËãËÓÒË

lévãÒÓˮӺº º¹Ë¯Èº¯È
A
°º°ºÒ ÒÏ ªãËäËÓºm
Λx
È}Ò² º
Ax o=

˺¯ËäÈ

p°ãÒ
n
Λ=Λ
Ò
rg
Ar
=
º
ker
A
˰¹º¹¯º°¯ÈÓ°mº Ò
rnA
=
)
ˆ
kerdim(
iº}ÈÏÈËã°mº
s˹º°¯Ë°mËÓÓº®¹¯ºm˯}º®äºÎÓºËÒ°«ºã«
ker
A
m©¹ºãÓ«°«°
ãºmÒ«º¹¯ËËãËÓÒ«
° m ÈÏÒ°Ë
},...,,{
21
n
ggg
º¹Ë¯Èº¯
A
ÒäËË äÈ¯Ò
A
g
ij
=
α
 º
°ã˰mÒ 
rg
Ar
g
=
ã« ãºº ÈÏÒ°È ºÈ m }ºº¯ÒÓÈÓº® Áº¯äË
°ãºmÒË¹¯ÒÓÈãËÎÓº°ÒÓË}ºº¯ººªãËäËÓÈ
n
x
ξ
ξ
ξ
...
2
1
=
«¯º¹Ë¯Èº¯È
A
ÒäËË
α
ξ
ij j
j
n
in==
=
01
1
;[,]

v ¯º® °º¯ºÓ© }ÈκË ¯ËËÓÒË ºÓº¯ºÓº® °Ò°Ëä© ãÒÓˮө² ¯ÈmÓËÓÒ®
α
ξ
ij j
j
n
in
==
=
01
1
;[,]
Ë «mã«°« ªãËäËÓºä «¯È º¹Ë¯Èº¯È
A
 ºªºä
¯ÈÏä˯Ӻ°«¯È˰äÈ}°ÒäÈãÓºËÒ°ãºãÒÓˮӺÓËÏÈmÒ°Ò䩲¯ËËÓÒ®ªº®
°Ò°Ëä©¯ÈmÓËÓÒ®}ºº¯ºË°ºãȰӺ˺¯ËäË¯ÈmÓº
nAnr
g
−=rg

˺¯ËäÈº}ÈÏÈÓÈ

ÒÓˮөËºº¯ÈÎËÓÒ«
zÈ}©ãººäËËÓºm¹m˲°ãÈ«²ÈºãȰÏÓÈËÓÒ®º¹Ë¯Èº¯ÈÓË
¹¯ÒÓÈãËÎÒºãȰÒº¹¯ËËãËÓÒ«°ãËËºmº¯Òººº¯ÈÎËÓÒÒ
 Ë }  Ò Ò    } È Á Ë  ¯ ©   m © °  Ë ®   ä È ˆ Ë ä È ˆ Ò } Ò   l n ‘ j 
ÙkÓÈã҈Ò˰}È«˺äˈ¯Ò«ÒãÒÓË®ÓÈ«ÈãË­¯ÈµäÓºmkp



          i¯‚º® mÈÎÓº® ²È¯È}ˆË¯Ò°ˆÒ}º® ãÒÓˮӺº º¹Ë¯Èˆº¯È «mã«Ëˆ°« °ºmº}‚¹Óº°ˆ 
ªãËäËӈºmãÒÓˮӺº¹¯º°ˆ¯ÈÓ°ˆmÈ Λ ÓÈÏ©mÈËäÈ«¹lévuãÒÓˮӺºº¹Ë¯Èˆº¯ÈÒº­º
ÏÓÈÈËäÈ« ker A 
      
      
 |¹¯ËËãËÓÒË            ‰lév ãÒÓˮӺº º¹Ë¯Èˆº¯È A  °º°ˆºÒˆ ÒÏ ªãËäËӈºm x ∈Λ  ˆÈ}Ò² ˆº
 
                          = o 
                         Ax
          
          
          
 ‘˺¯ËäÈ               p°ãÒ    Λ = Λn  Ò              rg A = r  ˆº         ker A  ˰ˆ  ¹º¹¯º°ˆ¯ÈÓ°ˆmº Ò
 
                         dim( ker Aˆ ) = n − r 
              
    iº}ÈÏȈËã°ˆmº
          
          s˹º°¯Ë°ˆmËÓÓº®¹¯ºm˯}º®äºÎÓº‚­Ë҈ °«ˆºã« ker A m©¹ºãÓ« ˆ°«‚°
          ãºmÒ«º¹¯ËËãËÓÒ«
          
          ‚°ˆ  m ­ÈÏÒ°Ë {g1, g 2 ,..., g n }  º¹Ë¯Èˆº¯ A  ÒäËˈ äȈ¯Ò‚                                    A   g
                                                                                                                              = αij  º

          °ã˰ˆmÒ   rg A                   = r  ã« ã ­ºº ­ÈÏÒ°È ‘ºÈ m }ºº¯ÒÓȈӺ® Áº¯äË
                                                 g

                                                          ξ1
                                                          ξ2
          ‚°ãºmÒ˹¯ÒÓÈãËÎÓº°ˆÒÓË}ºˆº¯ººªãËäËӈÈ x =     «¯‚º¹Ë¯Èˆº¯È A ÒäËˈ
                                                          ...
                                                          ξn
                   n
          mÒ    ∑ αij ξ j = 0 ;      i = [1, n] 
                  j =1
          
          v ¯‚º® °ˆº¯ºÓ© }ÈÎºË ¯Ë ËÓÒË ºÓº¯ºÓº® °Ò°ˆËä© ãÒÓˮө² ‚¯ÈmÓËÓÒ®
              n
           ∑ αij ξ j = 0 ;      i = [1, n]  ­‚ˈ «m㫈 °« ªãËäËӈºä «¯È º¹Ë¯Èˆº¯È A  ºªˆºä‚
           j =1
          ¯ÈÏä˯Ӻ°ˆ «¯È˰ˆ äÈ}°ÒäÈã ÓºËÒ°ãºãÒÓˮӺÓËÏÈmÒ°Ò䩲¯Ë ËÓÒ®ªˆº®
          °Ò°ˆËä©‚¯ÈmÓËÓÒ®}ºˆº¯ºË°ºãȰӺˆËº¯Ëä˯ÈmÓº n − rg A                                                   = n − r 
                                                                                                                              g
          
     ‘˺¯ËäȺ}ÈÏÈÓÈ
              
              
              
ÒÓˮө˺ˆº­¯ÈÎËÓÒ«
       
       
       zÈ}­©ãººˆäËËÓºm¹mˆË²°ã‚È«²}ºÈº­ãȰˆ ÏÓÈËÓÒ®º¹Ë¯Èˆº¯ÈÓË
¹¯ÒÓÈãËÎ҈º­ãȰˆÒº¹¯ËËãËÓÒ«°ãË‚ˈºmº¯Òˆ º­ºˆº­¯ÈÎËÓÒÒ