Аналитическая геометрия и линейная алгебра. Умнов А.Е. - 195 стр.

UptoLike

Составители: 

Рубрика: 

cÈÏËã


ÒÓˮөËÏÈmÒ°Ò亰ÒmãÒÓˮӺä¹¯º°¯ÈÓ°mË
{¹©ãºÒ°¹ºãϺmÈÓº¹ºÓ«ÒËmÏÈÒäÓººÓºÏÓÈÓºººº¯ÈÎËÓÒ«ÓÈÏ©
mÈË人ÒÓºÈiqnr|qnpiã«ºº¯ÈÎËÓÒ®È}ÎËËã«°«°¹ËÒÈãÓ©Ë°ãÈÒÈ}
ÓÈÏ©mÈË䩲qt~nrzqkt}Òxíé~nrzqkt}ºº¯ÈÎËÓÒ®cȰ°äº¯ÒäªÒ°ãÈÒ¹º
¯ºÓËË
|¹¯ËËãËÓÒË


|º¯ÈÎËÓÒË
Θ=
yxxAy ,,
ˆ
äÓºÎ˰mÈ
mäÓºÎ˰mº
Θ
ÓÈ
Ï©mÈË°«qt~nrzqktuÒãÒqt~nr|qnp˰ãÒÒÏ°ãºmÒ«
21
ˆˆ
xAxA
=
m©
Ë}ÈË
xx xx
12 12
=∈
,,

{°ãÈËÒÓË}ÒÒäÓºÎ˰mºm°Ë²ÏÓÈËÓÒ®º¹Ë¯Èº¯È
Θ= yxxAy ,,
ˆ
äºÎËÓË°ºm¹ÈÈ°
Θ

|¹¯ËËãËÓÒË


|º¯ÈÎËÓÒË
Θ= yxxAy ,,
ˆ
äÓºÎ˰mÈ
ÓÈ äÓºÎ˰mº
Θ
ÓÈÏ©mÈË°« xíé~nrzqktu ÒãÒ xíé~nr|qnp ˰ãÒ }ÈΩ® ªãËäËÓ ÒÏ
Θ
ÒäËË¹¯ºº¯ÈÏm

{°ãÈË°¯Ë}ÒÒ¹¯ºº¯ÈÏãººªãËäËÓÈÒÏ
Θ
m°ËÈ°˰mËm
Óº
mººËºmº¯«ºÓÓËËÒÓ°mËÓËÓ
{ ÈãÒË  ¹¯ÒmËËÓ© Òãã°¯ÈÒmÓ©Ë ¹¯Òä˯© ºº¯ÈÎËÓÒ® ¯ÈÏãÒÓ©²
Ò¹ºm
Ò¹ºº¯ÈÎËÓÒ«
Bgt_dlb\gh_
G_bgt_dlb\gh_
Kxjt_dlb\gh_


Θ

°

°

°

°

°

°


Θ

°

°

°

°

°

G_kxjt_dlb\gh_


Θ

°

°

°

°


°


Θ

°

°

°

°

°

°
Òjisq|j
cȰ°äº¯Òä˹˯ãÒÓˮө®º¹Ë¯Èº¯
A
ºº¯ÈÎÈÒ®ªãËäËÓ©
n
Λ
mªãË
äËÓ©
m
Λ
 º ˰ ºº¯ÈÎËÓÒË ã« }ºº¯ºº
n
Λ
 È
m
ΛΘ
 iº¹°Òä º
cÈÏËã 
ÒÓˮөËÏÈmÒ°Ò亰ˆÒmãÒÓˮӺ乯º°ˆ¯ÈÓ°ˆmË



        {¹­©ãºÒ°¹ºã ϺmÈÓº¹ºÓ«ˆÒËmÏÈÒäÓººÓºÏÓÈÓºººˆº­¯ÈÎËÓÒ«ÓÈÏ©
mÈË人ÒÓºÈiqnr|qnpi㫺ˆº­¯ÈÎËÓÒ®ˆÈ}ÎËm©Ëã« ˆ°«°¹ËÒÈã ө˰ã‚ÈÒˆÈ}
ÓÈÏ©mÈË䩲qt~nrzqkt€}Òxíé~nrzqkt€}ºˆº­¯ÈÎËÓÒ®cȰ°äºˆ¯Ò䪈Ұã‚ÈÒ¹º
¯º­ÓËË
        
        
    |¹¯ËËãËÓÒË           |ˆº­¯ÈÎËÓÒË y = Aˆ x ,          y ∈ Θ äÓºÎ˰ˆmÈ ΩmäÓºÎ˰ˆmºΘÓÈ
                                                                     x ∈ Ω,
    
                           Ï©mÈˈ°«qt~nrzqkt€u ÒãÒqt~nr|qnp ˰ãÒÒÏ‚°ãºmÒ« Aˆ x1 = Aˆ x 2 m©
                           ˆË}Èˈ x1 = x2 , x1 , x2 ∈ Ω 
             
             { °ã‚ÈË ÒӞË}ÒÒ äÓºÎ˰ˆmº m°Ë² ÏÓÈËÓÒ® º¹Ë¯Èˆº¯È y = Aˆ x ,                                                   x ∈ Ω,        y∈Θ 
äºÎˈÓ˰ºm¹ÈȈ °Θ
       
       
    |¹¯ËËãËÓÒË           |ˆº­¯ÈÎËÓÒË y = Aˆ x , x ∈ Ω, y ∈ Θ  äÓºÎ˰ˆmÈ Ω ÓÈ äÓºÎ˰ˆmº Θ
    
                           ÓÈÏ©mÈˈ°« xíé~nrzqkt€u ÒãÒ xíé~nr|qnp  ˰ãÒ }ÈΩ® ªãËäËӈ ÒÏ
                           ΘÒäËˈ¹¯ºº­¯ÈÏm Ω
        
        {°ã‚È˰ ¯žË}ÒÒ¹¯ºº­¯ÈÏã ­ººªãËäËӈÈÒÏ Θm°ËȰ‚Ë°ˆm‚ˈm ΩÓº
mºº­Ëºmº¯«ºÓÓËËÒÓ°ˆmËÓËÓ
        
        
        { ˆÈ­ãÒË  ¹¯ÒmËËÓ© Òãã °ˆ¯ÈˆÒmÓ©Ë ¹¯Òä˯© ºˆº­¯ÈÎËÓÒ® ¯ÈÏãÒÓ©²
ˆÒ¹ºm
        
                                                                                    
   ‘Ò¹ºˆº­¯ÈÎËÓÒ«                      Bgt_dlb\gh_                       G_bgt_dlb\gh_
             
                                                                 
                            ΩΘ ΩΘ
 
                             °°    °°
     Kxjt_dlb\gh_
                            °°    °°
                            °°    °
                                                                 
                                                                 
                            ΩΘ ΩΘ
 
                             °°    °°
    G_kxjt_dlb\gh_
                            °°    °°
                             °   °°
                                                                 
        
                                            Òjisq|j
        
        
             cȰ°äºˆ¯ÒäˆË¹Ë¯ ãÒÓˮө®º¹Ë¯Èˆº¯ A ºˆº­¯ÈÎÈ Ò®ªãËäËӈ© Λn mªãË
äËӈ© Λm  ˆº ˰ˆ  ºˆº­¯ÈÎËÓÒË ã« }ºˆº¯ºº Ω ⊆ Λn  È Θ ⊆ Λm  iº¹‚°ˆÒä ˆº